MATHEMATICAL PAPERS.
THE COLLECTED

MATHEMATICAL PAPERS

OF

ARTHUR CAYLEY, Sc.D., F.R.S.,
LATE SADLERIAN PROFESSOR OF PURE MATHEMATICS IN THE UNIVERSITY OF CAMBRIDGE.

SUPPLEMENTARY VOLUME,
CONTAINING TITLES OF PAPERS AND INDEX.

CAMBRIDGE:
AT THE UNIVERSITY PRESS.
1898.

[All Rights reserved.]
PREFATORY NOTE.

The present volume is supplementary to the series of thirteen volumes which contain the collected mathematical papers of the late Professor Cayley.

The first part is a list of the titles of the papers, extracted from the tables of contents of the respective volumes and arranged in the order in which the papers occur.

The second part is an index of subjects and authors. It has been made by my friend, Mr. F. Howard Collins, who most kindly volunteered to do this laborious work; my expectation is that the index will be a useful guide to the papers.

It is now ten years since the printing of the series of volumes began. For about the first seven of the years, Professor Cayley himself acted as Editor; since his death, the duty has fallen to me. My steady wish has been that unnecessary delay in the publication of the volumes should be avoided; that the wish has been realised, is largely due to the staff of the University Press. Everything that could be done in the way of simplifying my task and assisting its progress has been done with zealous good-will and cordial cooperation. To each and to all of them my thanks are given for the help which has enabled me to fulfil the duty I undertook at the request of the Syndics.

A. R. FORSYTH.

31 January, 1898.
COMPLETE LIST

OF

TITLES OF THE PAPERS.

[An Asterisk denotes that the paper is not printed in full.]
VOLUME I.

1. On a Theorem in the Geometry of Position
 Page 1

2. On the Properties of a certain Symbolical Expression
 Page 5

3. On certain Definite Integrals
 Page 13

4. On certain Expansions, in series of Multiple Sines and Cosines
 Page 19

5. On the Intersection of Curves
 Page 25

6. On the Motion of Rotation of a Solid Body
 Page 28

7. On a class of Differential Equations, and on the Lines of Curvature of an Ellipsoid
 Page 36

8. On Lagrange’s Theorem
 Page 40

9. Demonstration of Pascal’s Theorem
 Page 43

10. On the Theory of Algebraical Curves
 Page 46

11. Chapters in the Analytical Geometry of \((n)\) Dimensions
 Page 55

12. On the Theory of Determinants
 Camb. Phil. Trans. t. viii. (1849), pp. 1—16 (1843)
 Page 63

13. On the Theory of Linear Transformations
 Page 80

14. On Linear Transformations
 Camb. and Dubl. Math. Journ. t. i. (1846), pp. 104—122
 Page 95

1—2
15. *Note sur deux Formules données par MM. Eisenstein et Hesse*
Crelle, t. xxix. (1845), pp. 54—57
113

*16. *Mémoire sur les Hyperdéterminants*
Crelle, t. xxx. (1846), pp. 1—37
117

*17. *Note on Mr Bronwin's paper on Elliptic Integrals*
Camb. Math. Journ. t. iii. (1843), pp. 197, 198
118

*18. Remarks on the Rev. B. Bronwin's paper on Jacobi's Theory of
Elliptic Functions*
Phil. Mag. t. xxii. (1843), pp. 358—368
119

19. *Investigation of the Transformation of certain Elliptic Functions*
Phil. Mag. t. xxv. (1844), pp. 352—354
120

20. *On certain results relating to Quaternions.*
Phil. Mag. t. xxvi. (1845), pp. 141—145
123

*21. On Jacobi's Elliptic Functions, in reply to the Rev. B. Bronwin:
and on Quaternions*
Phil. Mag. t. xxvi. (1845), pp. 208—211
127

22. *On Algebraical Couples*
Phil. Mag. t. xxvii. (1845), pp. 38—40
128

23. *On the Transformation of Elliptic Functions*
Phil. Mag. t. xxvii. (1845), pp. 424—427
132

24. *On the Inverse Elliptic Functions*
136

25. *Mémoire sur les Fonctions doublement périodiques*
Liouville, t. x. (1845), pp. 385—420
156

26. *Mémoire sur les Courbes du Troisième Ordre*
Liouville, t. ix. (1844), pp. 285—293
183

27. *Nouvelles remarques sur les Courbes du Troisième Ordre.*
Liouville, t. x. (1845), pp. 102—109
190

28. *Sur quelques Intégrales Multiples*
Liouville, t. x. (1845), pp. 158—168
195

29. *Addition à la Note sur quelques Intégrales Multiples*
Liouville, t. x. (1845), pp. 242—244
204

30. *Mémoire sur les Courbes à double Courbure et les Surfaces
développables.*
Liouville, t. x. (1845), pp. 245—250
207

31. *Démonstration d'un Théorème de M. Chasles*
Liouville, t. x. (1845), pp. 383, 384
212
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>On some Analytical Formulae and their application to the Theory of Spherical Coordinates</td>
<td>213</td>
</tr>
<tr>
<td>33</td>
<td>On the Reduction of $du + \sqrt{U}$, when U is a Function of the Fourth Order</td>
<td>224</td>
</tr>
<tr>
<td>34</td>
<td>Note on the Maxima and Minima of Functions of Three Variables</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>Camb. and Dubl. Math. Journ. t. 1. (1846), pp. 74, 75</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>On Homogeneous Functions of the Third Order with Three Variables</td>
<td>230</td>
</tr>
<tr>
<td>36</td>
<td>On the Geometrical Representation of the Motion of a Solid Body</td>
<td>234</td>
</tr>
<tr>
<td>37</td>
<td>On the Rotation of a Solid Body round a Fixed Point</td>
<td>237</td>
</tr>
<tr>
<td>38</td>
<td>Note on a Geometrical Theorem contained in a Paper by Sir W. Thomson</td>
<td>253</td>
</tr>
<tr>
<td>39</td>
<td>On the Diametral Planes of a Surface of the Second Order</td>
<td>255</td>
</tr>
<tr>
<td>40</td>
<td>On the Theory of Involution in Geometry</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Camb. and Dubl. Math. Journ. t. II. (1847), pp. 52—61</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>On certain Formula for Differentiation, with applications to the evaluation of Definite Integrals</td>
<td>267</td>
</tr>
<tr>
<td>42</td>
<td>On the Caustic by Reflection at a Circle</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Camb. and Dubl. Math. Journ. t. II. (1847), pp. 128—130</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>On the Differential Equations which occur in Dynamical Problems</td>
<td>276</td>
</tr>
<tr>
<td>44</td>
<td>On a Multiple Integral connected with the Theory of Attractions</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Camb. and Dubl. Math. Journ. t. II. (1847), pp. 219—223</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>On the Theory of Elliptic Functions</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>Camb. and Dubl. Math. Journ. t. II. (1847), pp. 256—266</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Note on a System of Imaginaries</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxx. (1847), pp. 257, 258</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Author and Publication Details</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>47.</td>
<td>Sur la Surface des Ondes</td>
<td>Liouville, t. xi (1846), pp. 291—296</td>
</tr>
<tr>
<td>48.</td>
<td>Note sur les Fonctions de M. Sturm</td>
<td>Liouville, t. xi (1846), pp. 297—299</td>
</tr>
<tr>
<td>49.</td>
<td>Sur quelques Formules du Calcul Intégral</td>
<td>Liouville, t. xii (1847), pp. 231—240</td>
</tr>
<tr>
<td>50.</td>
<td>Sur quelques Théorèmes de la Géométrie de Position</td>
<td>Crelle, t. xxxi (1846), pp. 213—227</td>
</tr>
<tr>
<td>51.</td>
<td>Problème de Géométrie Analytique</td>
<td>Crelle, t. xxxi (1846), pp. 227—230</td>
</tr>
<tr>
<td>52.</td>
<td>Sur quelques Propriétés des Déterminants Gauches</td>
<td>Crelle, t. xxxi (1846), pp. 119—123</td>
</tr>
<tr>
<td>53.</td>
<td>Recherches sur l’Élimination, et sur la Théorie des Courbes</td>
<td>Crelle, t. xxxiv (1847), pp. 30—45</td>
</tr>
<tr>
<td>54.</td>
<td>Note sur les Hyperdéterminants</td>
<td>Crelle, t. xxxiv (1847), pp. 148—152</td>
</tr>
<tr>
<td>55.</td>
<td>Sur quelques Théorèmes de la Géométrie de Position</td>
<td>Crelle, t. xxxiv (1847), pp. 270—275</td>
</tr>
<tr>
<td>60.</td>
<td>On the Expansion of Integral Functions in a series of Laplace’s Coefficients</td>
<td>Camb. and Dubl. Math. Journ. t. iii (1848), pp. 120, 121</td>
</tr>
<tr>
<td>63.</td>
<td>Démonstration d’un Théorème de M. Boole concernant des Intégrales Multiples</td>
<td>Liouville, t. xiii (1848), pp. 245—248</td>
</tr>
<tr>
<td>Contents of Volume I.</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>64. Sur la généralisation d'un Théorème de M. Jellett qui se rapporte aux Attractions</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>Liouville, t. xiii. (1848), pp. 264—268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65. Nouvelles Recherches sur les Fonctions de M. Sturm</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>Liouville, t. xiii. (1848), pp. 269—274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66. Sur les Fonctions de Laplace</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>Liouville, t. xiii. (1848), pp. 275—280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67. Note sur les Fonctions Elliptiques</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xxxvii. (1848), pp. 58—60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68. On the application of Quaternions to the Theory of Rotation</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>Phil. Mag. t. xxxiii. (1848), pp. 196—200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69. Sur les Détérminants Gauches</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xxxviii. (1848), pp. 93—96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70. Sur quelques Théorèmes de la Géométrie de Position</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xxxviii. (1848), pp. 97—104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71. Note sur les Fonctions du Second Ordre</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xxxviii. (1848), pp. 105, 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72. Note on the Theory of Permutations</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td>Phil. Mag. t. xxxiv. (1849), pp. 527—529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73. Abstract of a Memoir by Dr Hesse on the construction of the Surface of the Second Order which passes through nine given points</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>74. On the Simultaneous Transformation of Two Homogeneous Functions of the Second Order</td>
<td>428</td>
<td></td>
</tr>
<tr>
<td>75. On the Attraction of an Ellipsoid</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>76. On the Triple Tangent Planes of Surfaces of the Third Order</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>77. On the order of certain Systems of Algebraical Equations</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>78. Note on the Motion of Rotation of a Solid of Revolution</td>
<td>462</td>
<td></td>
</tr>
<tr>
<td>79. On a System of Equations connected with Malfatti's Problem, and on another Algebraical System</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Contents of Volume I.</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>80. Sur quelques Transmutations des Lignes Courbes</td>
<td>471</td>
<td></td>
</tr>
<tr>
<td>Liouville, t. xiv. (1849), pp. 40—46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81. Addition au Mémoire sur quelques Transmutations des Lignes Courbes</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>Liouville, t. xv. (1850), pp. 351—356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82. On the Triadic Arrangements of Seven and Fifteen Things</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>Phil. Mag. t. xxxvii. (1850), pp. 50—53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83. On Curves of Double Curvature and Developable Surfaces</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>84. On the Developable Surfaces which arise from two Surfaces of the Second Order</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td>85. Note on a Family of Curves of the Fourth Order</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>86. On the Developable derived from an Equation of the Fifth Order</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>87. Notes on Elliptic Functions (from Jacobi)</td>
<td>507</td>
<td></td>
</tr>
<tr>
<td>88. On the Transformation of an Elliptic Integral</td>
<td>508</td>
<td></td>
</tr>
<tr>
<td>89. On the Attraction of Ellipsoids (Jacobi’s Method)</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>90. Note sur quelques Formules relatives aux Coniques</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xxxix. (1850), pp. 1—3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91. Sur le Problème des Contacts</td>
<td>522</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xxxix. (1850), pp. 4—13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92. Note sur un Système de certaines Formules</td>
<td>532</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xxxix. (1850), pp. 14, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93. Note sur quelques Formules qui se rapportent à la Multiplication des Fonctions Elliptiques</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xxxix. (1850), pp. 16—22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94. Note sur l’Addition des Fonctions Elliptiques</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xli. (1851), pp. 57—65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95. Note sur quelques Théorèmes de la Géométrie de Position</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xli. (1851), pp. 66—72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96. Mémoire sur les Coniques inscrites dans une même Surface du Second Ordre</td>
<td>557</td>
<td></td>
</tr>
<tr>
<td>Crelle, t. xli. (1851), pp. 73—86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents of Volume I.

<table>
<thead>
<tr>
<th>Note</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.</td>
<td>Note sur la Solution de l'Équation $x^n - 1 = 0$</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>Crelle, t. xli (1851), pp. 81—83</td>
<td></td>
</tr>
<tr>
<td>*98.</td>
<td>Note relative à la sixième section du Mémoire sur quelques Théorèmes de la Géométrie de Position</td>
<td>567</td>
</tr>
<tr>
<td></td>
<td>Crelle, t. xli (1851), p. 84</td>
<td></td>
</tr>
<tr>
<td>99.</td>
<td>Note sur quelques Formules qui se rapportent à la Multiplication des Fonctions Elliptiques</td>
<td>568</td>
</tr>
<tr>
<td></td>
<td>Crelle, t. xli (1851), pp. 85—92</td>
<td></td>
</tr>
<tr>
<td>100.</td>
<td>Note sur la Théorie des Hyperdéterminants</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>Crelle, t. xlii (1851), pp. 368—371</td>
<td></td>
</tr>
</tbody>
</table>

Notes and References to papers in Volume I.

Volumes II, III, and IV of the *Cambridge Mathematical Journal* have on the title page the dates 1841, 1843, 1845 respectively, and volume VIII of the *Cambridge Philosophical Transactions* has the date 1849. As each of these volumes extends over more than a single year, I have added the year of publication for the papers 1, 2, ..., 12. In all other cases, the year of publication is shown by the date on the title page of the volume.
VOLUME II.

101. Notes on Lagrange's Theorem

102. On a Double Infinite Series.

103. On Certain Definite Integrals

104. On the Theory of Permutants

105. Correction to the Postscript to the Paper on Permutants

106. On the Singularities of Surfaces

107. On the Theory of Skew Surfaces

108. On certain Multiple Integrals connected with the Theory of
Attractions

109. On the Rationalisation of certain Algebraical Equations

110. Note on the Transformation of a Trigonometrical Expression
Camb. and Dubl. Math. Journ. t. ix. (1854), pp. 61, 62

111. On a Theorem of M. Lejeune-Dirichlet's

112. Demonstration of a Theorem relating to the Products of Sums
of Squares
Phil. Mag. t. iv. (1852), pp. 515—519

113. On the Geometrical Representation of the Integral
\[\int dx + \sqrt{(x+a)(x+b)(x+c)}\]
Phil. Mag. t. v. (1853), pp. 281—284
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>Analytical Researches connected with Steiner's Extension of Malfatti's Problem</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(Phil. Trans. t. cxxii. (for 1852), pp. 253—278)</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Note on the Porism of the In-and-circumscribed Polygon</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), pp. 99—102)</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Correction of two Theorems relating to the In-and-circumscribed Polygon</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), pp. 376, 377)</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Note on the Integral $\int dx \sqrt{(m-x)(x+a)(x+b)(x+c)}$</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), pp. 103—105)</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>On the Harmonic Relation of two Lines or two Points</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), pp. 105—107)</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>On a Theorem for the Development of a Factorial</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), pp. 182—185)</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Note on a Generalisation of the Binomial Theorem</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), p. 185)</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Note on a Question in the Theory of Probabilities</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), p. 259)</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>On the Homographic Transformation of a Surface of the Second Order into itself</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), pp. 326—333)</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>On the Geometrical Representation of an Abelian Integral</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vii. (1853), pp. 414—118)</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>On a Property of the Caustic by Refraction of the Circle</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vi. (1853), pp. 427—431)</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>On the Theory of Groups as depending on the Symbolical Equation $\theta^n = 1$</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. viii. (1854), pp. 40—47)</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>On the Theory of Groups as depending on the Symbolical Equation $\theta^n = 1$, Second Part</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vii. (1854), pp. 408, 409)</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>On the Homographic Transformation of a Surface of the Second Order into itself</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vii. (1854), pp. 208—212; continuation of 122</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Developments on the Porism of the In-and-circumscribed Polygon</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>(Phil. Mag. t. vii. (1854), pp. 339—345)</td>
<td></td>
</tr>
</tbody>
</table>
129. On the Porism of the In-and-circumscribed Triangle, and on an irrational Transformation of two Ternary Quadratic Forms each into itself 145
 Phil. Mag. t. ix. (1855), pp. 513—517

130. Deuxième Mémoire sur les Fonctions doublement Périodiques 150
 Liouville, t. xix. (1854), pp. 193—208; sequel to 25

131. Nouvelles Recherches sur les Covariants .. 164
 Crelle, t. xlvil. (1854), pp. 109—125

132. Réponse à une Question proposée par M. Steiner .. 179
 Crelle, t. L. (1855), pp. 277, 278

133. Sur un Théorème de M. Schlafli .. 181
 Crelle, t. L. (1855), pp. 278—282

134. Remarques sur la Notation des Fonctions Algébriques 185
 Crelle, t. L. (1855), pp. 282—285

135. Note sur les Covariants d’une Fonction Quadratique, Cubique, ou Biquadratique à deux Indéterminées ... 189
 Crelle, t. L. (1855), pp. 285—287

136. Sur la Transformation d’une Fonction Quadratique en elle-même par des Substitutions linéaires .. 192
 Crelle, t. L. (1855), pp. 288, 289

137. Recherches Ulterieures sur les Déterminants gauches 202
 Crelle, t. L. (1855), pp. 299—313; continuation of 52 and 69.

138. Recherches sur les Matrices dont les termes sont des fonctions linéaires d’une seule Indéterminée .. 216
 Crelle, t. L. (1855), pp. 313—317

139. An Introductory Memoir on Quantics ... 221
 Phil. Trans. t. cxliv. (for 1854), pp. 244—258

140. Researches on the Partition of Numbers .. 235
 Phil. Trans. t. cxlv. (for 1855), pp. 127—140

141. A Second Memoir on Quantics ... 250
 Phil. Trans. t. cxlvi. (for 1856), pp. 101—126

142. Numerical Tables Supplementary to Second Memoir on Quantics 276
 Now first published (1889)

143. Tables of the Covariants M to W of the Binary Quintic: from the Second, Third, Fifth, Eighth, Ninth and Tenth Memoirs on Quantics 282
 Arranged in the present form (1889)
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>144. A Third Memoir on Quantics</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1856), pp. 627—647</td>
</tr>
<tr>
<td>145. A Memoir on Caustics</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1857), pp. 273—312</td>
</tr>
<tr>
<td>146. A Memoir on Curves of the Third Order</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1857), pp. 415—446</td>
</tr>
<tr>
<td>147. A Memoir on the Symmetric Functions of the Roots of an Equation</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1857), pp. 489—496</td>
</tr>
<tr>
<td>148. A Memoir on the Resultant of a System of two Equations</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1857), pp. 703—715</td>
</tr>
<tr>
<td>149. On the Symmetric Functions of the Roots of certain Systems of two Equations</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1857), pp. 717—726</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1857), pp. 727—731</td>
</tr>
<tr>
<td>151. Tables of the Sturmian Functions for Equations of the Second, Third, Fourth, and Fifth Degrees</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1857), pp. 733—736</td>
</tr>
<tr>
<td>152. A Memoir on the Theory of Matrices</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1858), pp. 17—37</td>
</tr>
<tr>
<td>153. A Memoir on the Automorphic Linear Transformation of a Bipartite Quadric Function</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1858), pp. 39—46</td>
</tr>
<tr>
<td>154. Supplementary Researches on the Partition of Numbers</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1858), pp. 47—52</td>
</tr>
<tr>
<td>155. A Fourth Memoir on Quantics</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1858), pp. 415—427</td>
</tr>
<tr>
<td>156. A Fifth Memoir on Quantics</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1858), pp. 429—460</td>
</tr>
<tr>
<td>157. On the Tangential of a Cubic</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1858), pp. 461—463</td>
</tr>
<tr>
<td>158. A Sixth Memoir on Quantics</td>
</tr>
<tr>
<td>Phil. Trans. t. cxlvi. (for 1859), pp. 61—90</td>
</tr>
</tbody>
</table>

Notes and References to papers in Volume II. 593
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Journal and Volume</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>On a Theorem relating to Reciprocal Triangles</td>
<td>Quart. Math. Journ. t. 1. (1857),</td>
<td>7—10</td>
</tr>
<tr>
<td>9</td>
<td>Two letters on Cubic Forms</td>
<td>Quart. Math. Journ. t. 1. (1857),</td>
<td>85—87 and 90, 91</td>
</tr>
<tr>
<td>29</td>
<td>On some Geometrical Theorems relating to a triangle circumscribed about a Conic</td>
<td>Quart. Math. Journ. t. 1. (1857),</td>
<td>169—175</td>
</tr>
<tr>
<td>38</td>
<td>*A demonstration of the Fundamental Property of Geodesic Lines</td>
<td>Quart. Math. Journ. t. 1. (1857),</td>
<td>185, 186</td>
</tr>
</tbody>
</table>
Contents of Volume III.

<table>
<thead>
<tr>
<th>Note on Mr Salmon’s Equation of the Orthotomic Circle</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. i. (1857), pp. 242—244</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note on the Logic of Characteristics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. i. (1857), pp. 257—259</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On Laplace’s Method for the Attraction of Ellipsoids</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>On the Oval of Descartes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. i. (1857), pp. 320—328</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On the Porism of the In-and-circumscribed Triangle</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>On Jacobi’s Canonical Formula for Disturbed Motion in an Elliptic Orbit</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Solution of a Mechanical Problem</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. i. (1857), pp. 405, 406</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On the à posteriori Demonstration of the Porism of the In-and-circumscribed Triangle</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. ii. (1858), pp. 31—38</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On certain Forms of the Equation of a Conic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. ii. (1858), pp. 44—48</td>
<td>86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On the Reduction of an Elliptic Orbit to a fixed plane</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. ii. (1858), pp. 49—54</td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On Sir W. R. Hamilton’s Method for the Problem of three or more Bodies</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. ii. (1858), pp. 66—73</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On Lagrange’s Solution of the Problem of two fixed Centres</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. ii. (1858), pp. 76—83</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note on Certain Systems of Circles</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. ii. (1858), pp. 83—88</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A Theorem relating to Surfaces of the Second Order</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. ii. (1858), pp. 140—142</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note on the ‘Circular Relation’ of Prof. Möbius</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>On the determination of the value of a certain Determinant</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quart. Math. Journ. t. ii. (1858), pp. 163—166</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On the Sums of Certain Series arising from the Equation $x = u + t \phi$</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>188</td>
<td>On the Simultaneous Transformation of two Homogeneous Functions of the Second Order</td>
</tr>
<tr>
<td>189</td>
<td>Note on a formula in finite Differences</td>
</tr>
<tr>
<td></td>
<td>Quart. Math. Journ. t. ii. (1858), pp. 198—201</td>
</tr>
<tr>
<td>190</td>
<td>On the System of Conics which pass through the same four points</td>
</tr>
<tr>
<td>191</td>
<td>Note on the Expansion of the true Anomaly</td>
</tr>
<tr>
<td>192</td>
<td>On the Area of the Conic Section represented by the General Trilinear Equation of the Second Degree</td>
</tr>
<tr>
<td>193</td>
<td>On Rodrigues' Method for the Attraction of Ellipsoids</td>
</tr>
<tr>
<td>194</td>
<td>Note on the Theory of Attraction</td>
</tr>
<tr>
<td>195</td>
<td>Report on the Recent Progress of Theoretical Dynamics</td>
</tr>
<tr>
<td></td>
<td>Report of British Association, 1857, pp. 1–42</td>
</tr>
<tr>
<td>196</td>
<td>Note sur un Problème d'Analyse Indéterminée</td>
</tr>
<tr>
<td></td>
<td>Nouvelles Annales de Math. t. xvi. (1857), pp. 161–165</td>
</tr>
<tr>
<td>197</td>
<td>Note on the Theory of Logarithms</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xi. (1856), pp. 275–280</td>
</tr>
<tr>
<td>198</td>
<td>Note on a Result of Elimination</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xi. (1856), pp. 378, 379</td>
</tr>
<tr>
<td>199</td>
<td>Note on the Theory of Elliptic Motion</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xi. (1856), pp. 425–428</td>
</tr>
<tr>
<td>200</td>
<td>On the Cones which pass through a given Curve of the Third Order in Space</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xii. (1856), pp. 20–22</td>
</tr>
<tr>
<td>201</td>
<td>Second Note on the Theory of Logarithms</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xii. (1856), pp. 354–360</td>
</tr>
<tr>
<td>202</td>
<td>Supplementary Remarks on the Porism of the In-and-circumscribed Triangle</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xiii. (1857), pp. 19–30</td>
</tr>
<tr>
<td>203</td>
<td>On the Theory of the Analytical Forms called Trees</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xiii. (1857), pp. 172–176</td>
</tr>
</tbody>
</table>
204. On a Problem in the Partition of Numbers 247
 Phil. Mag. t. xiii. (1857), pp. 245—248

205. Note on the Summation of a Certain Factorial Expression . 250
 Phil. Mag. t. xiii. (1857), pp. 419—423

206. Note on a Theorem relating to the Rectangular Hyperbola . 254
 Phil. Mag. t. xiii. (1857), p. 423

207. Analytical Solution of the Problem of Tactions 255
 Phil. Mag. t. xiii. (1857), pp. 507—509

208. Note on the Equipotential Curve \(\frac{m}{r} + \frac{m'}{r'} = C \) 258
 Phil. Mag. t. xiv. (1857), pp. 142—146

209. A Demonstration of Sir W. R. Hamilton’s Theorem of the
 Isochronism of the Circular Hodograph 262
 Phil. Mag. t. xiv. (1857), pp. 427—430

210. On the Cubic Transformation of an Elliptic Function 266
 Phil. Mag. t. xv. (1858), pp. 363, 364

211. On a Theorem relating to Hypergeometric Series 268
 Phil. Mag. t. xvi. (1858), pp. 356, 357

212. A Memoir on the Problem of Disturbed Elliptic Motion 270
 Mem. R. Astron. Soc. t. xxvii. (1859), pp. 1—29

213. On the Development of the Disturbing Function in the Lunar
 Theory . 293
 Mem. R. Astron. Soc. t. xxvii. (1859), pp. 69—95

214. The First part of a Memoir on the Development of the Dis-
 turbing Function in the Lunar and Planetary Theories . . . 319

215. A Supplementary Memoir on the Problem of Disturbed Elliptic
 Motion . 344

216. Tables of the Development of Functions in the Theory of Elliptic
 Motion . 360

217. A Memoir on the Problem of the Rotation of a solid Body . . 475
 Mem. R. Astron. Soc. t. xxix. (1861), pp. 307—342

218. A Third Memoir on the Problem of Disturbed Elliptic Motion . 505
 Mem. R. Astron. Soc. t. xxxi. (1863), pp. 43—56
219. On some formula relating to the Variation of the Plane of a Planet's Orbit
 Monthly Notices R. Astron. Soc. t. xxii. (1861), pp. 43-46

220. Note on a Theorem of Jacobi's in relation to the Problem of Three Bodies
 Monthly Notices R. Astron. Soc. t. xxii. (1862), pp. 76-78

221. On the Secular Acceleration of the Moon's Mean Motion

222. On Lambert's Theorem for Elliptic Motion

Notes and References to papers in Volume III.
VOLUME IV.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>223.</td>
<td>Note sur un théorème général par rapport à l'élmination</td>
<td>Tortolini</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. VII. (1856), pp. 454—458</td>
<td></td>
</tr>
<tr>
<td>224.</td>
<td>Sur un théorème d'Abel. Note</td>
<td>Tortolini</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. VIII. (1857), pp. 201—203</td>
<td></td>
</tr>
<tr>
<td>228.</td>
<td>Sur l'intégrale $\int_0^1 \frac{(1-t)^{n-1}}{(a+bt-ct^n)^{n+1}} , dt$</td>
<td>Liouville</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. II. (1857), pp. 49—51</td>
<td></td>
</tr>
<tr>
<td>229.</td>
<td>Note sur une formule pour la réversion des séries</td>
<td>Crelle</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. XII. (1856), pp. 276—284</td>
<td></td>
</tr>
<tr>
<td>230.</td>
<td>Note sur la méthode d'élaboration de Bezout</td>
<td>Crelle</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. LIII. (1857), pp. 366, 367</td>
<td></td>
</tr>
<tr>
<td>231.</td>
<td>Note sur l'équation $x^2 - Dy^2 = \pm 4, \ D \equiv 5 \pmod{8}$</td>
<td>Crelle</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. LIII. (1857), pp. 369—371</td>
<td></td>
</tr>
<tr>
<td>232.</td>
<td>Mémoire sur la forme canonique des fonctions binaires</td>
<td>Crelle</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. LIV. (1857), pp. 48—58</td>
<td></td>
</tr>
<tr>
<td>233.</td>
<td>Addition au Mémoire sur la forme canonique des fonctions binaires</td>
<td>Crelle</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. LIV. (1857), p. 292</td>
<td></td>
</tr>
<tr>
<td>234.</td>
<td>Deuxième Note sur une formule pour la réversion des séries</td>
<td>Crelle</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. LIV. (1857), pp. 156—161</td>
<td></td>
</tr>
<tr>
<td>235.</td>
<td>Sur quelques formules pour la transformation des intégrales elliptiques</td>
<td>Crelle</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t. LV. (1858), pp. 15—24</td>
<td></td>
</tr>
</tbody>
</table>
Crelle, t. lv. (1858), p. 192

237. Théorème sur les déterminants gauches.
Crelle, t. lv. (1858), pp. 277, 278

238. Note sur les normales d'une conique.
Crelle, t. lvi. (1859), pp. 182—185

239. Addition à la Note sur la composition du nombre 47 par rapport aux vingt-troisièmes racines de l'unité.
Crelle, t. lvi. (1859), pp. 186, 187

240. Note on a Theorem in Spherical Trigonometry.
Phil. Mag. t. xvii. (1859), p. 151

Phil. Mag. t. xvii. (1859), pp. 123—128

242. Second Note on Poinsot's four new Regular Polyhedra.
Phil. Mag. t. xvii. (1859), pp. 209, 210

243. On the Theory of Groups as depending on the Symbolic Equation \(\theta^n = 1 \). Third Part.
Phil. Mag. t. xviii. (1859), pp. 34—37. Sequel to 125 and 126

244. On an Analytical Theorem relating to the distribution of Electricity upon two Spherical Surfaces.
Phil. Mag. t. xviii. (1859), pp. 119—127

245. On an Analytical Theorem connected with the distribution of Electricity upon two Spherical Surfaces. Second Part.
Phil. Mag. t. xviii. (1859), pp. 193—202

246. On Contour and Slope Lines.
Phil. Mag. t. xviii. (1859), pp. 264—268

Phil. Mag. t. xviii. (1859), pp. 374—378. Continuation of 203

248. Sketch of a proof of the Theorem that every Algebraic Equation has a Root.
Phil. Mag. t. xviii. (1859), pp. 436—439

249. Note on Cones of the Third Order.
Phil. Mag. t. xviii. (1859), pp. 439—442

250. Sur la surface qui est l'enveloppe des plans conduits par les points d'un ellipsoïde perpendiculairement aux rayons menés par le centre.
Tortolini, t. ii. (1859), pp. 168—179
251. Sur quelques formules pour la différenciation .. 135
 Tortolini, t. ii. (1859), pp. 214—230

252. Note sur l’équation des différences pour une équation donnée de degré quelconque .. 150
 Tortolini, t. ii. (1859), pp. 365, 366

253. Sur la courbe parallèle à l’ellipse .. 152
 Tortolini, t. iii. (1860), pp. 311—316

254. Sur la surface parallèle à l’ellipsoïde .. 158
 Tortolini, t. iii. (1860), pp. 345—352

255. On a Problem of Double Partitions .. 166
 Phil. Mag. t. xx. (1860), pp. 337—341

256. On a System of Algebraic Equations .. 171
 Phil. Mag. t. xx. (1860), pp. 341, 342

257. On the Cubic Centres of a line with respect to three lines and a line .. 173
 Phil. Mag. t. xx. (1860), pp. 418—423

258. On a Relation between two Ternary Cubic Forms .. 179
 Phil. Mag. t. xx. (1860), pp. 512—514

259. The Problem of Polyhedra .. 182
 Phil. Trans. t. cxxvii. (for 1857), pp. 183—185

260. On the Double Tangents of a Plane Curve .. 186
 Phil. Trans. t. xxix. (for 1859), pp. 193—212

261. On the Conic of Five-pointic Contact at any Point of a Plane Curve .. 207
 Phil. Trans. t. cxxix. (for 1859), pp. 371—400

262. On the Equation of Differences for an Equation of any Order and in particular for the Equations of the Orders two, three, four, and five .. 240
 Phil. Trans. t. cl. (for 1860), pp. 93—112

263. Demonstration of a Theorem in Finite Differences .. 262
 Phil. Trans. t. cl. (for 1860), pp. 321—323

264. On an Extension of Arbogast’s Method of Derivations .. 265
 Phil. Trans. t. cl. (for 1861), pp. 37—43

265. Addition to the Memoir on an Extension of Arbogast’s Method of Derivations .. 272
 Now first published, 1891
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>266</td>
<td>On the Equation for the Product of the Differences of all but one of the Roots of a given Equation</td>
<td>276</td>
</tr>
<tr>
<td>267</td>
<td>On the Porism of the In-and-circumscribed Polygon</td>
<td>292</td>
</tr>
<tr>
<td>268</td>
<td>On a New Auxiliary Equation in the Theory of Equations of the Fifth Order</td>
<td>309</td>
</tr>
<tr>
<td>269</td>
<td>A Seventh Memoir on Quantics</td>
<td>325</td>
</tr>
<tr>
<td>270</td>
<td>On the Double Tangents of a Curve of the Fourth Order</td>
<td>342</td>
</tr>
<tr>
<td>271</td>
<td>Sur l'invariant le plus simple d'une fonction quadratique bi-ternaire, et sur le résultant de trois fonctions quadratiques ternaires</td>
<td>349</td>
</tr>
<tr>
<td>272</td>
<td>Démonstration d'un théorème de Jacobi par rapport au problème de Pfaff</td>
<td>359</td>
</tr>
<tr>
<td>273</td>
<td>Note sur la transformation de Tschirnhausen</td>
<td>364</td>
</tr>
<tr>
<td>274</td>
<td>Deuxième Note sur la transformation de Tschirnhausen</td>
<td>368</td>
</tr>
<tr>
<td>275</td>
<td>On Tschirnhausen's Transformation</td>
<td>375</td>
</tr>
<tr>
<td>276</td>
<td>On the Analytical Theory of the Conic</td>
<td>395</td>
</tr>
<tr>
<td>277</td>
<td>On the Wave Surface</td>
<td>420</td>
</tr>
<tr>
<td>278</td>
<td>Note on the Singular Solutions of Differential Equations</td>
<td>426</td>
</tr>
<tr>
<td>279</td>
<td>On a Theorem relating to Spherical Conics</td>
<td>428</td>
</tr>
<tr>
<td>280</td>
<td>On the Conics which touch four given lines</td>
<td>429</td>
</tr>
<tr>
<td>281</td>
<td>Note on the Wave Surface</td>
<td>432</td>
</tr>
</tbody>
</table>
282. *On a particular case of Castillon's Problem*

283. *On a Theorem relating to Homographic Figures*

284. *On a New Analytical Representation of Curves in Space*

285. *On the System of Conics having double contact with each other*

286. *Note on the value of certain Determinants the terms of which are the squared distances of Points in a Plane or in Space*

287. *Note on the Equation for the squared differences of the Roots of a Cubic Equation*

288. *Note on the Curvature of a plane Curve at a double point, and on the Curvature of Surfaces*

289. *On some Numerical Expansions*

290. *A Discussion of the Sturmian Constants for cubic and quartic Equations*
Quart. Math. Journ. t. iv. (1861), pp. 7—12

291. *On the Demonstration of a Theorem relating to the Moments of Inertia of a Solid Body*

292. *A Theorem in Conics*

293. *On a Certain System of Functional Symbols*

294. *On a New Analytical Representation of Curves in Space*

295. *On the Construction of the ninth point of Intersection of the Cubics which pass through eight given points*

296. *On the Conics which pass through the four foci of a given Conic*
297. On some Formulae relating to the Distances of a point from
the vertices of a Triangle and to the Problem of Tactions. 510

298. Report on the Progress of the Solution of certain Special Problems
of Dynamics 513
Report of the Brit. Assoc. for the Advancement of Science, 1862,
pp. 184—252

299. Mathematics, recent Terminology in 594
English Cyclopaedia, t. v. (1860), pp. 534—542

Notes and References to papers in Volume IV. 609
VOLUME V.

300. Note relative aux droites en involution de M. Sylvester
 PAGE 1

301. Sur les cônes du second ordre qui passent par six points donnés
 Comptes Rendus, Paris, t. lii. (1861), pp. 1216—1218
 PAGE 4

302. Considérations générales sur les courbes en espace
 PAGE 7

303. Sur le problème du polygone inscrit et circonscrit. Lettre à
 M. Poncelet
 Comptes Rendus, Paris, t. liv. (1862), pp. 700, 701
 PAGE 21

304. Sur un mémoire de Jacobi. Extrait d'une lettre à M. J. Bertrand
 Comptes Rendus, Paris, t. lvi. (1863), p. 43
 PAGE 23

305. Considérations générales sur les courbes en espace. Courbes du
 cinquième ordre
 Comptes Rendus, Paris, t. lvii. (1864), pp. 994—1000
 PAGE 24

306. Sur les coniques qui touchent des courbes d'ordre quelconque.
 Extrait d'une lettre à M. Chasles
 Comptes Rendus, Paris, t. lxi. (1864), pp. 224, 225
 PAGE 31

307: Note sur les fonctions al(x), &c., de M. Weierstrass
 Liouville, t. vii. (1862), pp. 137—142
 PAGE 33

308. On the Δ faced Polyacrons, in reference to the problem of
 the enumeration of Polyhedra
 Manchester Memoirs, t. i. (1862), pp. 248—256
 PAGE 38

309. Note on the Theory of Determinants
 Phil. Mag. t. xxi. (1861), pp. 180—185
 PAGE 45

310. Note on Mr Jerrard’s researches on the Equation of the Fifth
 Order
 Phil. Mag. t. xxi. (1861), pp. 210—214
 PAGE 50

C. xiv.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>311</td>
<td>On a Theorem of Abel's relating to Equations of the Fifth Order</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxi. (1861), pp. 257—263</td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>On the Partitions of a Close</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxi. (1861), pp. 424—428</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>On a Surface of the Fourth Order</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxi. (1861), pp. 491—495</td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>On the Curves situate on a Surface of the Second Order</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxii. (1861), pp. 35—38</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>On the Cubic Centres of a Line with respect to three lines and a line</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxii. (1861), pp. 433—436</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td>Note on the solution of an Equation of the Fifth Order</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxiii. (1862), pp. 195, 196</td>
<td></td>
</tr>
<tr>
<td>317</td>
<td>Note on the transformation of a certain Differential Equation</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxiii. (1862), pp. 266, 267</td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>On a question in the Theory of Probabilities</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxiii. (1862), pp. 361—365</td>
<td></td>
</tr>
<tr>
<td>319</td>
<td>Postscript to the paper, On a question in the Theory of Probabilities</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxiii. (1862), pp. 470, 471</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>On the Transcendent (gd , u = \frac{1}{i} \log \tan (\frac{1}{4} \pi + \frac{1}{2} u i))</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxiv. (1862), pp. 19—21</td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>Final Remarks on Mr Jerrard's theory of Equations of the Fifth Order</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxiv. (1862), p. 290</td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>On a Skew Surface of the Third Order</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxiv. (1862), pp. 514—519</td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>On a tactical Theorem relating to the Triads of Fifteen Things</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxv. (1863), pp. 59—61</td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>Note on a Theorem relating to Surfaces</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxv. (1863), pp. 61, 62</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>Note on a Theorem relating to a Triangle, Line, and Conic</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxv. (1863), pp. 181—183</td>
<td></td>
</tr>
</tbody>
</table>
326. Theorems relating to the Canonic Roots of a Binary Quantic of an odd order.
Phil. Mag. t. xxv. (1863), pp. 206—208

327. On the Stereographic Projection of the Spherical Conic.
Phil. Mag. t. xxv. (1863), pp. 359—353

328. On the delineation of a Cubic Scroll.
Phil. Mag. t. xxv. (1863), pp. 528—530

Phil. Mag. t. xxvi. (1863), pp. 20, 21

Phil. Mag. t. xxvi. (1863), pp. 373—379 and 441—452

331. Analytical Theorem relating to the four Conics inscribed in the same Conic and passing through the same three Points.
Phil. Mag. t. xxvii. (1864), pp. 42, 43

332. Analytical Theorem relating to the sections of a Quadric Surface.
Phil. Mag. t. xxvii. (1864), pp. 43, 44

333. Note on the Nodal Curve of the Developable derived from the Quartic Equation (a, b, c, d, εx4, 1) = 0.
Phil. Mag. t. xxvii. (1864), pp. 437—440

Phil. Mag. t. xxvii. (1864), pp. 493—496

335. Tables des formes quadratiques binaires pour les déterminants négatifs depuis \(D = -1 \) jusqu'à \(D = -100 \), pour les déterminants positifs non carrés depuis \(D = 2 \) jusqu'à \(D = 99 \), et pour les treize déterminants négatifs irréguliers qui se trouvent dans le premier millier.
Crelle, t. lx. (1862), pp. 357—372

336. Note sur l'élimination.
Crelle, t. lx. (1862), pp. 373, 374

337. Note sur la réalité des racines d'une équation quadratique.
Crelle, t. lxii. (1863), pp. 367, 368

Crelle, t. lxiii. (1864), pp. 34—39

339. On Skew Surfaces, otherwise Scrolls.
Phil. Trans. t. cliii. (for 1863), pp. 453—483

340. A Second Memoir on Skew Surfaces, otherwise Scrolls.
Phil. Trans. t. cliv. (for 1864), pp. 559—576
341. *On the Sextactic Points of a Plane Curve*
Phil. Trans. t. clv. (for 1865), pp. 545—578

342. *On the Conies which pass through three given points and touch a given line*

343. *On the Cusp of the second kind or Nodecusp*
Quart. Math. Journ. t. vi. (1864), pp. 74, 75

344. *On Certain Developable Surfaces*

345. *On the Inflexions of the Cubical Divergent Parabolas*

346. *Note on an expression for the Resultant of two Binary Cubics*

347. *On the Notion and Boundaries of Algebra*

348. *On the Theory of Involution*
Camb. Phil. Trans. t. xi. Part I. (1866), pp. 21—38

349. *On a case of the Involution of Cubic Curves*

350. *On the Classification of Cubic Curves*
Camb. Phil. Trans. t. xi. Part I. (1866), pp. 81—128

351. *On Cubic Cones and Curves*
Camb. Phil. Trans. t. xi. Part I. (1866), pp. 129—144

352. *Suite des recherches sur l'élimination et la théorie des courbes*
Crelle, t. lxiv. (1865), pp. 167—171

353. *Note sur la surface du quatrième ordre de Steiner*
Crelle, t. lxiv. (1865), pp. 172—174

354. *Note sur les singularités supérieures des courbes planes.*
Crelle, t. lxiv. (1865), pp. 369—371

355. *Sur un théorème relatif à huit points situés sur une conique.*
Crelle, t. lxv. (1866), pp. 180—184

356. *Sur un cas particulier de la surface du quatrième ordre avec seize points singuliers.*
Crelle, t. lxv. (1866), pp. 284—291

357. *A Supplementary Memoir on the Theory of Matrices*
Phil. Trans. t. clvi. (for 1866), pp. 25—35
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Journal and Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>358</td>
<td>Addition to the Memoir on Tschirnhausen’s Transformation</td>
<td>Phil. Trans. t. cxi. (for 1866), pp. 97—100</td>
<td>449</td>
</tr>
<tr>
<td>359</td>
<td>A Supplementary Memoir on Caustics</td>
<td>Phil. Trans. t. cxi (for 1867), pp. 7—16</td>
<td>454</td>
</tr>
<tr>
<td>360</td>
<td>Note on a Quartic Surface</td>
<td>Phil. Mag. t. xxix. (1865), pp. 19—22</td>
<td>465</td>
</tr>
<tr>
<td>361</td>
<td>On Quartic Curves</td>
<td>Ph. Mag. t. xxix. (1865), pp. 109—108</td>
<td>468</td>
</tr>
<tr>
<td>362</td>
<td>Note on Lobatschewsky’s Imaginary Geometry</td>
<td>Ph. Mag. t. xxix. (1865), pp. 231—233</td>
<td>471</td>
</tr>
<tr>
<td>363</td>
<td>On the theory of the Evolute</td>
<td>Ph. Mag. t. xxix. (1865), pp. 344—350</td>
<td>473</td>
</tr>
<tr>
<td>364</td>
<td>On a Theorem relating to Five Points in a plane</td>
<td>Ph. Mag. t. xxix. (1865), pp. 460—464</td>
<td>480</td>
</tr>
<tr>
<td>365</td>
<td>On the Intersections of a Pencil of four lines by a Pencil</td>
<td>Ph. Mag. t. xxix. (1865), pp. 501—503</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>of two lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>Note on the Projection of the Ellipsoid</td>
<td>Ph. Mag. t. xxx. (1865), pp. 50—52</td>
<td>487</td>
</tr>
<tr>
<td>367</td>
<td>On a Triangle in-and-circumscribed to a Quartic Curve</td>
<td>Ph. Mag. t. xxx. (1865), pp. 340—342</td>
<td>489</td>
</tr>
<tr>
<td>368</td>
<td>On a problem of Geometrical Permutation</td>
<td>Ph. Mag. t. xxx. (1865), pp. 370—372</td>
<td>493</td>
</tr>
<tr>
<td>369</td>
<td>On a property of Commutants</td>
<td>Ph. Mag. t. xxx. (1865), pp. 411—413</td>
<td>495</td>
</tr>
<tr>
<td>370</td>
<td>On the signification of an elementary formula of Solid Geometry</td>
<td>Ph. Mag. t. xxx. (1865), pp. 413, 414</td>
<td>498</td>
</tr>
<tr>
<td>371</td>
<td>On a Formula for the intersections of a Line and Conic, and on an Integral Formula connected therewith</td>
<td>Quart. Math. Journ. t. vii. (1866), pp. 1—6</td>
<td>500</td>
</tr>
</tbody>
</table>
Contents of Volume V.

376. Théorème relatif à l'équilibre de quatre forces Comptes Rendus, t. lxi. (1865), pp. 829, 830 540

377. Note sur la correspondance de deux points sur une courbe Comptes Rendus, t. lxii. (1866), pp. 586—590 542

379. Notices of Communications to the British Association for the Advancement of Science Brit. Assoc. Reports, Notices and Abstracts of Communications to the Sections (1854 to 1864) 549

383. Problems and Solutions Mathematical Questions with their Solutions from the Educational Times, vols. i. to iv. (1863 to 1865); for contents, see p. 612 560

Notes and References to papers in Volume V. 613
VOLUME VI.

384. *On the Transformation of Plane Curves*

385. *On the Correspondence of Two Points on a Curve*
Proc. London Math. Society, t. i. (1865—66), No. VII. pp. 1—7

386. *On the Logarithms of Imaginary Quantities*

387. *Notices of Communications to the London Mathematical Society*

388. *Note on the Composition of Infinitesimal Rotations*
Quart. Math. Journ. t. VIII. (1867), pp. 7—10

389. *On a Locus derived from Two Conics*
Quart. Math. Journ. t. VIII. (1867), pp. 77—84

390. *Theorem relating to the four Conics which touch the same two lines and pass through the same four points*

391. *Solution of a Problem of Elimination*
Quart. Math. Journ. t. VIII. (1867), pp. 183—185

392. *On the Conics which pass through two given Points and touch two given Lines*
Quart. Math. Journ. t. VIII. (1867), pp. 211—219

393. *On the Conics which touch three given Lines and pass through a given Point*

394. *On a Locus in relation to the Triangle*

395. *Investigations in connexion with Casey's Equation*
Quart. Math. Journ. t. VIII. (1867), pp. 334—341
Contents of Volume VI.

396. On a certain Envelope depending on a Triangle inscribed in a Circle 72
 Quart. Math. Journ. t. ix. (1868), pp. 31—41 and 175—176

397. Specimen Table $M = a^p b^q (\text{Mod. } N)$ for any prime or composite Modulus 83
 Quart. Math. Journ. t. ix. (1868), pp. 95, 96 and plate

398. On a certain Sextic Developable and Sextic Surface connected therewith 87

399. On the Cubical Divergent Parabolas 101
 Quart. Math. Journ. t. ix. (1868), pp. 185—189

400. On the Cubic Curves inscribed in a given Pencil of Six Lines 105

401. A Notation of the Points and Lines in Pascal’s Theorem 116

402. On a Singularity of Surfaces 123

403. On Pascal’s Theorem 129

404. Reproduction of Euler’s Memoir of 1758 on the Rotation of a Solid Body 135

405. An Eighth Memoir on Quantics 147
 Phil. Trans. t. clvii. (for 1867), pp. 513—554

406. On the Curves which satisfy given Conditions 191
 Phil. Trans. t. clviii. (for 1868), pp. 75—143

407. Second Memoir on the Curves which satisfy given Conditions; the Principle of Correspondence 263
 Phil. Trans. t. clviii. (for 1868), pp. 145—172

408. Addition to Memoir on the Resultant of a System of two Equations 292
 Phil. Trans. t. clviii. (for 1868), pp. 173—180

409. On the Conditions for the existence of three equal Roots or of two pairs of equal Roots of a Binary Quartic or Quintic 300
 Phil. Trans. t. clviii. (for 1868), pp. 577—588
Contents of Volume VI.

410. A Third Memoir on Skew Surfaces, otherwise Scrolls ... 312
 Phil. Trans. t. clix. (for 1869), pp. 111—126

411. A Memoir on the Theory of Reciprocal Surfaces .. 329
 Phil. Trans. t. clix. (for 1869), pp. 201—229

412. A Memoir on Cubic Surfaces ... 359
 Phil. Trans. t. clix. (for 1869), pp. 231—236

413. A Memoir on Abstract Geometry .. 456
 Phil. Trans. t. clx. (for 1870), pp. 51—63

414. On Polyzomal Curves, otherwise the Curves \sqrt[3]{U} + \sqrt[3]{V} + \&c. = 0 470
 Trans. R. Soc. Edinburgh, t. xxv. (for 1868), pp. 1—110

415. Corrections and Additions to the Memoir on the Theory of Reciprocal Surfaces 577
 Phil. Trans. t. clxii. (for 1872), pp. 83—87

416. On the Theory of Reciprocal Surfaces ... 582
 Addition to Salmon's Analytic Geometry of Three Dimensions, 4th ed. (1882), pp. 592—604

Notes and References to papers in Volume VI. .. 593

Portrait ... to face Title.

C. XIV.
VOLUME VII.

<table>
<thead>
<tr>
<th>Article</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>417.</td>
<td>On the Locus of the Foci of the Conies which pass through Four Given Points</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxxii. (1866), pp. 362—365</td>
<td></td>
</tr>
<tr>
<td>418.</td>
<td>A Remark on Differential Equations</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxxii. (1866), pp. 379—381</td>
<td></td>
</tr>
<tr>
<td>419.</td>
<td>A Theorem on Differential Operators</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxxii. (1866), pp. 461—472</td>
<td></td>
</tr>
<tr>
<td>420.</td>
<td>On Riccati's Equation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxxvi. (1868), pp. 348—351</td>
<td></td>
</tr>
<tr>
<td>421.</td>
<td>Note on the Solvibility of Equations by means of Radicals</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xxxvi. (1868), pp. 386, 387</td>
<td></td>
</tr>
<tr>
<td>422.</td>
<td>On the Geodesic Lines on an Oblate Spheroid</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xl. (1870), pp. 329—340</td>
<td></td>
</tr>
<tr>
<td>423.</td>
<td>On the Plane Representation of a Solid Figure</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xli. (1871), pp. 286—290</td>
<td></td>
</tr>
<tr>
<td>424.</td>
<td>On the Attraction of a Terminated Straight Line</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xli. (1871), pp. 358—360</td>
<td></td>
</tr>
<tr>
<td>425.</td>
<td>Note on the Geodesic Lines on an Ellipsoid</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xli. (1871), pp. 534, 535</td>
<td></td>
</tr>
<tr>
<td>426.</td>
<td>On a supposed New Integration of Differential Equations of the Second Order</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xlii. (1871), pp. 197—199</td>
<td></td>
</tr>
<tr>
<td>427.</td>
<td>On Gauss' Pentagramma Mirificum</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag. t. xlii. (1871), pp. 311, 312</td>
<td></td>
</tr>
<tr>
<td>428.</td>
<td>Note sur la correspondance de deux points sur une courbe</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. lxii. (1866), pp. 586—590</td>
<td></td>
</tr>
<tr>
<td>429.</td>
<td>Sur les Coniques déterminées par cinq conditions de contact avec une courbe donnée</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. lxiii. (1866), pp. 9—12</td>
<td></td>
</tr>
</tbody>
</table>
Contents of Volume VII.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td>Note sur quelques formules de M. E. de Jonquieres, relatives aux Courbes qui satisfont à des conditions données</td>
<td>Comptes Rendus, t. lxiii. (1866), pp. 666—670</td>
</tr>
<tr>
<td>431</td>
<td>Sur la transformation cubique d'une fonction elliptique</td>
<td>Comptes Rendus, t. lxiv. (1867), pp. 560—563</td>
</tr>
<tr>
<td>432</td>
<td>Théorème relatif à la théorie des substitutions</td>
<td>Comptes Rendus, t. lxvii. (1868), pp. 784, 785</td>
</tr>
<tr>
<td>433</td>
<td>Sur les surfaces tétraédrales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note to De la Gournerie, Recherches sur les Surfaces régies tétraédrales symétriques, 8vo. Paris, 1867</td>
<td></td>
</tr>
<tr>
<td>434</td>
<td>On Certain Skew Surfaces, otherwise Scrolls</td>
<td>Camb. Phil. Trans. t. xi. Part II. (1869), pp. 277—289</td>
</tr>
<tr>
<td>436</td>
<td>On a Certain Sextic Torse</td>
<td>Camb. Phil. Trans. t. xi. Part III. (1871), pp. 507—523</td>
</tr>
<tr>
<td>437</td>
<td>Démonstration nouvelle du théorème de M. Casey par rapport aux cercles qui touchent à trois cercles donnés</td>
<td>Annali di Matematica, t. i. (1867), pp. 132—134</td>
</tr>
<tr>
<td>438</td>
<td>Note sur quelques tores sextiques</td>
<td>Annali di Matematica, t. ii. (1868), pp. 99, 100</td>
</tr>
<tr>
<td>439</td>
<td>Addition à la Note sur quelques tores sextiques</td>
<td>Annali di Matematica, t. ii. (1868), pp. 219—221</td>
</tr>
<tr>
<td>440</td>
<td>Note sur une transformation géométrique.</td>
<td>Journ. der Mathem. (Crelle), t. lxvii. (1867), pp. 95, 96</td>
</tr>
<tr>
<td>441</td>
<td>Note sur l'algorithme des tangentes doubles d'une courbe du quatrième ordre</td>
<td>Journ. der Mathem. (Crelle), t. lxviii. (1868), pp. 176—179</td>
</tr>
<tr>
<td>442</td>
<td>Note sur la surface du quatrième ordre douée de seize points singuliers et de seize plans singuliers</td>
<td>Journ. der Mathem. (Crelle), t. lxxiii. (1871), pp. 292, 293</td>
</tr>
<tr>
<td>443</td>
<td>Note on the solution of the Quartic Equation $aU + 6βH = 0$</td>
<td>Math. Ann. t. i. (1869), pp. 54, 55</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>On the Mechanical Description of a Nodal Bicircular Quartic</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>On the Rational Transformation between Two Spaces</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>Note on the Cartesian with Two Imaginary Axial Foci</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Sketch of recent researches upon Quartic and Quintic Surfaces</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>On the Rational Transformation between Two Spaces, and on Special Systems of Points</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>A Second Memoir on Quartic Surfaces</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>On an Analytical Theorem from a new point of view</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>On a Problem in the Calculus of Variations</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>A Third Memoir on Quartic Surfaces</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>On Plücker's Models of certain Quartic Surfaces</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>Note on the Discriminant of a Binary Quartic</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>On the Quartic Surfaces $(x^2 + y^2 + z^2)^2 = 0$</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>Quart. Math. Journ. t. x. (1870), pp. 24—34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the Anharmonic-Ratio Sextic</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Quart. Math. Journ. t. x. (1870), pp. 56, 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the Double-Sixers of a Cubic Surface</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Quart. Math. Journ. t. x. (1870), pp. 58—71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note on Mr Frost's paper On the direction of the Lines of Curvature in the neighbourhood of an Umbilicus</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Quart. Math. Journ. t. x. (1870), pp. 111—113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the Geometrical Interpretation of the Covariants of a Binary Cubic</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>Quart. Math. Journ. t. x. (1870), pp. 148, 149</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents of Volume VII.

462. A Ninth Memoir on Quantics
Phil. Trans. t. clxi. (for 1871), pp. 17—50

463. Note on a Differential Equation
Mem. Manchester Society, t. ii. (1865), pp. 111—114

464. Note on Planck's Lunar Theory

465. Note on the Lunar Theory
Monthly Notices R. Ast. Society, t. xxv. (1864—1865), pp. 182—189

466. Second Note on the Lunar Theory
Monthly Notices R. Ast. Society, t. xxv. (1864—1865), pp. 267—269

467. Expressions for Plana's e, γ in terms of the Elliptic e, γ

468. Addition to Second Note on the Lunar Theory

469. On an Expression for the Angular Distance of two Planets

470. Note on the Attraction of Ellipsoids

471. Note on the Problem of the Determination of a Planet's Orbit from three observations

472. Note on Lambert's Theorem for Elliptic Motion

473. On the Graphical Construction of the Umbral or Penumbral Curve at any instant during a Solar Eclipse

474. On the Geometrical Theory of Solar Eclipses

475. On a property of the Stereographic Projection

476. On the Determination of the Orbit of a Planet from three observations
Mem. R. Ast. Society, t. xxxvii. (1870), pp. 17—111

477. On the Graphical Construction of a Solar Eclipse
Mem. R. Ast. Society, t. xxxvii. (1872), pp. 1—17

478. On the Geodesic Lines on an Ellipsoid
479. The Second Part of a Memoir On the Development of the Disturbing Function in the Lunar and Planetary Theories

480. On the Expression of Delaunay's l, g, h in terms of his finally adopted Constants

481. On the Expression of M. Delaunay's h + g in terms of his finally adopted Constants

482. Note on a pair of Differential Equations in the Lunar Theory

483. On a pair of Differential Equations in the Lunar Theory

484. On the variations of the position of the Orbit in the Planetary Theory

485. Problems and Solutions
Mathematical Questions with their Solutions from the Educational Times, vols. v. to xii. (1866—1869): for contents, see p. 607

Notes and References to papers in Volume VII.

Portrait to face Title.
VOLUME VIII.

486. *Note on Dr Glaisher's paper on a theorem in definite integration*

487. *On the quartic surfaces* \((2U, V, W) = 0\)

488. *Note on a relation between two circles*
Quart. Math. Journ. t. xi. (1871), pp. 82, 83

489. *On the porism of the in-and-circumscribed polygon, and the (2, 2) correspondence of points on a conic*
Quart. Math. Journ. t. xi. (1871), pp. 83—91

490. *On a problem of elimination*

491. *On the quartic surfaces* \((2U, V, W) = 0\)
Quart. Math. Journ. t. xi. (1871), pp. 111—113

492. *Note on a system of algebraical equations*
Quart. Math. Journ. t. xi. (1871), pp. 132, 133

493. *On evolutes and parallel curves*

494. *Example of a special discriminant*
Quart. Math. Journ. t. xi. (1871), pp. 211—213

495. *On the envelope of a certain quadric surface*
Quart. Math. Journ. t. xi. (1871), pp. 244—246

496. *Tables of the binary cubic forms for the negative determinants \(\equiv 0 \pmod{4}\) from \(-4\) to \(-400\); and \(\equiv 1 \pmod{4}\) from \(-3\) to \(-99\); and for five irregular negative determinants*

497. *Note on the calculus of logic*
498. On the inversion of a quadric surface 67

499. On the theory of the curve and torse 72

500. On a theorem relating to eight points on a conic 92

501. Review. Pineto's tables of logarithms 95
 Quart. Math. Journ. t. xi. (1871), pp. 375, 376

502. On the surfaces divisible into squares by their curves of curvature . 97

503. On the surfaces each the locus of the vertex of a cone which passes through m given points and touches 6—m given lines 99

504. On the mechanical description of certain sextic curves 138

505. On the surfaces divisible into squares by their curves of curvature . . 145
 Proc. Lond. Math. Society, t. iv. (1871—1873), pp. 120, 121

506. On the mechanical description of a cubic curve 147

507. On the mechanical description of certain quartic curves by a modified oval chuck ... 151

508. On geodesic lines, in particular those of a quadric surface 156

509. Plan of a curve-tracing apparatus 179

510. On bicursal curves .. 181

511. Addition to the memoir on geodesic lines, in particular those of a quadric surface ... 188

512. On a correspondence of points in relation to two tetrahedra 200

513. On a bicyclic chuck .. 209
 Phil. Mag. t. xliii. (1872), pp. 365—367
Contents of Volume VIII.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>514</td>
<td>On the problem of the in-and-circumscribed triangle</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Phil. Trans. t. clx. (for 1871), pp. 369—412</td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>Sur les courbes aplaties</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. lxxiv. (1872), pp. 708—712</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>Sur une surface quartique aplatie</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. lxxiv. (1872), pp. 1393—1395</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>Sur les surfaces divisibles en carrés par leurs courbes de courbure et sur la théorie de Dupin</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. lxxiv. (1872), pp. 177—185, 246—250, 324—330, 381—385, 1800—1803</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>Sur la condition pour qu'une famille de surfaces données puisse faire partie d'un système orthogonal</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. lxxv. (1872), pp. 1445—1449, 177—185, 246—250, 324—330, 381—385, 1800—1803</td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>On curvature and orthogonal surfaces</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>Phil. Trans. t. clxiii. (for 1873), pp. 229—251</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>On the centro-surface of an ellipsoid</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>Camb. Phil. Trans. t. xii. Part I. (1873), pp. 319—365</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>On Dr Wiener’s model of a cubic surface with 27 real lines; and on the construction of a double-sixer</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Camb. Phil. Trans. t. xii. Part I. (1873), pp. 366—383</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>Note on the theory of invariants</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Math. Ann. t. iii. (1871), pp. 268—271</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>On the transformation of unicursal surfaces</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>Math. Ann. t. iii. (1871), pp. 469—474</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>On the deficiency of certain surfaces</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Math. Ann. t. iii. (1871), pp. 526—529</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>An example of the higher transformation of a binary form</td>
<td>398</td>
</tr>
<tr>
<td>526</td>
<td>On a surface of the eighth order</td>
<td>401</td>
</tr>
<tr>
<td>527</td>
<td>On a theorem in covariants</td>
<td>404</td>
</tr>
<tr>
<td>528</td>
<td>On the non-Euclidian geometry</td>
<td>409</td>
</tr>
<tr>
<td>529</td>
<td>A “Smith’s Prize” paper [1868]; solutions by Prof. Cayley</td>
<td>414</td>
</tr>
</tbody>
</table>

C. XIV.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>531</td>
<td>A "Smith's Prize" paper [1869]; solutions by Prof. Cayley</td>
<td></td>
<td>Oxford, Camb. and Dubl. Messenger of Mathematics, t. v. (1871), pp. 41—64</td>
</tr>
<tr>
<td>535</td>
<td>Note on the problem of envelopes</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), pp. 3, 4</td>
</tr>
<tr>
<td>536</td>
<td>Note on Lagrange's demonstration of Taylor's theorem</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), pp. 22—24</td>
</tr>
<tr>
<td>537</td>
<td>Solutions of a Smith's Prize paper for 1871</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), pp. 37—47, 71—77, 89—95</td>
</tr>
<tr>
<td>538</td>
<td>Extract from a letter from Prof. Cayley to Mr C. W. Merri-</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), pp. 87, 88</td>
</tr>
<tr>
<td></td>
<td>field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>Further note on Lagrange's demonstration of Taylor's theorem</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), pp. 105, 106</td>
</tr>
<tr>
<td>540</td>
<td>On a property of the torse circumscribed about two quadric surfaces</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), pp. 111, 112</td>
</tr>
<tr>
<td>541</td>
<td>On the reciprocal of a certain equation of a conic</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), pp. 120, 121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>542</td>
<td>Further note on Taylor's theorem</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), p. 137</td>
</tr>
<tr>
<td>543</td>
<td>On an identity in spherical trigonometry</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), p. 145</td>
</tr>
<tr>
<td>544</td>
<td>On a penultimate quartic curve</td>
<td></td>
<td>Messenger of Mathematics, t. i. (1872), pp. 178—180</td>
</tr>
</tbody>
</table>
Contents of Volume VIII.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>On the theory of the singular solutions of differential equations of the first order</td>
<td>545</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), pp. 6–12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>Theorems in relation to certain sign-symbols</td>
<td>546</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), pp. 17–20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>On the representation of a spherical or other surface on a plane: a Smith's Prize dissertation</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), pp. 36, 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>On Listing's theorem</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), pp. 81–89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>548</td>
<td>Note on the maxima of certain factorial functions</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), pp. 129, 130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>Problem and hypothetical theorems in regard to two quadric surfaces</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), p. 137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Two Smith's Prize dissertations [1872]</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), pp. 145–149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>556</td>
<td>On a differential formula connected with the theory of confocal conics</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), pp. 157, 158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>558</td>
<td>Two Smith's Prize dissertations [1873]</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), pp. 161–166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>An elliptic-transcendent identity</td>
<td>554</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. ii. (1873), p. 179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>Notices of Communications to the British Association for the Advancement of Science</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brit. Assoc. Reports, Notices and Abstracts of Communications to the Sections (1870, 1871, 1873)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes and References to papers in Volume VIII. | 569 | 6—2
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>On the geometrical representation of Cauchy's theorems of root-</td>
<td>Camb. Phil. Trans., t. xii. Part II. (1877), pp. 395—413</td>
</tr>
<tr>
<td>42</td>
<td>Note on the transformation of two simultaneous equations</td>
<td>Quart. Math. Journ., t. xi. (1871), pp. 266, 267</td>
</tr>
<tr>
<td>43</td>
<td>On a theorem in elimination</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 5, 6</td>
</tr>
<tr>
<td>45</td>
<td>Note on the Cartesian</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 16—19</td>
</tr>
<tr>
<td>48</td>
<td>On the transformation of the equation of a surface to a set of chief</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 34—38</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Volume</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>52</td>
<td>On an identical equation connected with the theory of invariants</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 115—118</td>
</tr>
<tr>
<td>56</td>
<td>Note on the integrals (\int_0^x \cos x^2 , dx) and (\int_0^x \sin x^2 , dx).</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 118—126</td>
</tr>
<tr>
<td>568</td>
<td>On the cyclide</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 148—165</td>
</tr>
<tr>
<td>570</td>
<td>On the superlines of a quadric surface in five-dimensional space</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 176—180</td>
</tr>
<tr>
<td>571</td>
<td>A demonstration of Dupin's theorem</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 185—191</td>
</tr>
<tr>
<td>572</td>
<td>Theorem in regard to the Hessian of a quaternary function</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 193—197</td>
</tr>
<tr>
<td>573</td>
<td>Note on the ((2, 2)) correspondence of two variables</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 197, 198</td>
</tr>
<tr>
<td>574</td>
<td>On Wronski's theorem</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 221—228</td>
</tr>
<tr>
<td>575</td>
<td>On a special quartic transformation of an elliptic function</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 266—269</td>
</tr>
<tr>
<td>577</td>
<td>Note in illustration of certain general theorems obtained by Dr Lipschitz</td>
<td>Quart. Math. Journ., t. xii. (1873), pp. 346—349</td>
</tr>
<tr>
<td>578</td>
<td>A memoir on the transformation of elliptic functions</td>
<td>Phil. Trans., t. clxiv. (for 1874), pp. 397—456</td>
</tr>
<tr>
<td>579</td>
<td>Address delivered by the President, Professor Cayley, on present- ing the Gold Medal of the [Royal Astronomical] Society to Professor Simon Newcomb</td>
<td>Monthly Notices R. Ast. Society, t. xxxiv. (1873—1874), pp. 224—233</td>
</tr>
<tr>
<td>580</td>
<td>On the number of distinct terms in a symmetrical or partially symmetrical determinant; with an addition</td>
<td>Monthly Notices R. Ast. Society, t. xxxiv. (1873—1874), pp. 303—307; p. 335</td>
</tr>
<tr>
<td>Page</td>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Note on the Theory of Precession and Nutation</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>On spheroidal trigonometry</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>Addition to Prof. R. S. Bell’s paper “Note on a transformation of Lagrange’s equations of motion in generalised coordinates, which is convenient in Physical Astronomy”</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>A new theorem on the equilibrium of four forces acting on a solid body</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>On the mathematical theory of isomers</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>A Smith’s Prize dissertation [1873]</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Problem [on tetrahedra]</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>On residuation in regard to a cubic curve</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Addition to Prof. Hall’s paper “On the motion of a particle toward an attracting centre at which the force is infinite”</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>A Smith’s Prize paper and dissertation [1874]; solutions and remarks</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>On the Mercator’s projection of a skew hyperboloid of revolution</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>A Sheepshanks’ problem (1866)</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>On a differential equation in the theory of elliptic functions</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>On a Senate-House problem</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Note on a theorem of Jacobi’s for the transformation of a double integral</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Author/Source</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>597</td>
<td>On a differential equation in the theory of elliptic functions</td>
<td>Messenger of Mathematics, t. iv. (1875), pp. 110—113</td>
</tr>
<tr>
<td>598</td>
<td>Note on a process of integration</td>
<td>Messenger of Mathematics, t. iv. (1875), pp. 149, 150</td>
</tr>
<tr>
<td>600</td>
<td>Theorem on the n-th Roots of Unity</td>
<td>Messenger of Mathematics, t. iv. (1875), p. 171</td>
</tr>
<tr>
<td>601</td>
<td>Note on the Cassinian</td>
<td>Messenger of Mathematics, t. iv. (1875), pp. 187, 188</td>
</tr>
<tr>
<td>606</td>
<td>On the expression of the coordinates of a point of a quartic curve as functions of a parameter</td>
<td>Proc. Lond. Math. Society, t. vi. (1874—1875), pp. 81—83</td>
</tr>
<tr>
<td>607</td>
<td>A memoir on prepotentials</td>
<td>Phil. Trans., t. clxv. (for 1875), pp. 675—774</td>
</tr>
<tr>
<td>609</td>
<td>On the analytical forms called factions</td>
<td>Brit. Assoc. Report, 1875, Notices of Communications to the Sections, p. 10</td>
</tr>
<tr>
<td>610</td>
<td>On the analytical forms called Trees, with application to the theory of chemical combinations</td>
<td>Brit. Assoc. Report, 1875, pp. 257—305</td>
</tr>
<tr>
<td>612</td>
<td>Note sur une formule d'intégration indéfinie</td>
<td>Comptes Rendus, t. lxxviii. (1874), pp. 1624—1629</td>
</tr>
<tr>
<td>613</td>
<td>On the group of points G_3 on a sextic curve with five double points</td>
<td>Math. Ann., t. viii. (1875), pp 359—362</td>
</tr>
</tbody>
</table>
614. On a problem of projection 508

615. On the conic torus .. 519

616. A geometrical illustration of the cubic transformation in elliptic
 functions ... 522
 Quart. Math. Journ., t. xiii. (1875), pp. 211—216

617. On the scalene transformation of a plane curve 527

618. On the mechanical description of a Cartesian 535

619. On an algebraical operation 537

620. Correction of two numerical errors in Sohnke’s paper respect-
 ing modular equations 543
 Crelle, t. lxxxi. (1876), p. 229

621. On the number of the univalent radicals \(C_n H_{2n+1} \) 544
 Phil. Mag., Ser. 5, t. iii. (1877), pp. 34, 35

622. On a system of equations connected with Malfatti’s problem ... 546

623. On three-bar motion .. 551

624. On the bicursal sextic .. 581

625. On the condition for the existence of a surface cutting at
 right angles a given set of lines 587

626. On the general differential equation \(\frac{dx}{\sqrt{X}} + \frac{dy}{\sqrt{Y}} = 0 \), where \(X, Y \)
 are the same quartic functions of \(x, y \) respectively 592

627. Geometrical illustration of a theorem relating to an irrational
 function of an imaginary variable 609

628. On the circular relation of Möbius 612

629. On the linear transformation of the integral \(\int \frac{du}{\sqrt{U}} \) 618
<table>
<thead>
<tr>
<th>Article Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>On an expression for $1 \pm \sin(2\pi + 1)u$ in terms of $\sin u$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. v. (1876), pp. 7, 8</td>
<td></td>
</tr>
<tr>
<td>631</td>
<td>Synopsis of the theory of equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. v. (1876), pp. 39–49</td>
<td></td>
</tr>
<tr>
<td>632</td>
<td>On Aronhold's integration-formula</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. v. (1876), pp. 88–90</td>
<td></td>
</tr>
<tr>
<td>633</td>
<td>Note on Mr Martin's paper "On the integrals of some differentials"</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. v. (1876), p. 163</td>
<td></td>
</tr>
<tr>
<td>634</td>
<td>Theorems in trigonometry and on partitions</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. v. (1876), p. 164, p. 188</td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>Note on the demonstration of Clairaut's theorem</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. v. (1876), pp. 166, 167</td>
<td></td>
</tr>
<tr>
<td>636</td>
<td>On the theory of the singular solutions of differential equations of</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>the first order</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. vi. (1877), pp. 23–27</td>
<td></td>
</tr>
<tr>
<td>637</td>
<td>On a differential equation in the theory of elliptic functions</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. vi. (1877), p. 29</td>
<td></td>
</tr>
<tr>
<td>638</td>
<td>On a q-formula leading to an expression for E_1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. vi. (1877), pp. 63–66</td>
<td></td>
</tr>
<tr>
<td>639</td>
<td>An elementary construction in optics</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. vi. (1877), pp. 81, 82</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>Further note on Mr Martin's paper</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. vi. (1877), pp. 82, 83</td>
<td></td>
</tr>
<tr>
<td>641</td>
<td>On the flexure of a spherical surface</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. vi. (1877), pp. 88–90</td>
<td></td>
</tr>
<tr>
<td>642</td>
<td>On a differential relation between the sides of a quadrangle</td>
<td>33</td>
</tr>
</tbody>
</table>

C. XIV.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Journal and Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>643.</td>
<td>On a quartic curve with two odd branches</td>
<td>Messenger of Mathematics, t. vi. (1877), pp. 107, 108</td>
</tr>
<tr>
<td>647.</td>
<td>On the quartic surfaces represented by the equation, symmetrical determinant = 0</td>
<td>Quart. Math. Journ., t. xiv. (1877), pp. 46—52</td>
</tr>
<tr>
<td>651.</td>
<td>On a special surface of minimum area</td>
<td>Quart. Math. Journ., t. xiv. (1877), pp. 190—196</td>
</tr>
<tr>
<td>657.</td>
<td>Note on the theory of elliptic integrals</td>
<td>Mathematische Annalen, t. xii. (1877), pp. 143—146</td>
</tr>
<tr>
<td>658.</td>
<td>On some formulae in elliptic integrals</td>
<td>Mathematische Annalen, t. xii. (1877), pp. 369—374</td>
</tr>
<tr>
<td>659.</td>
<td>A theorem on groups</td>
<td>Mathematische Annalen, t. xiii. (1878), pp. 561—565</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Journal/Book/Source</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>660</td>
<td>On the correspondence of homographies and rotations</td>
<td>Mathematische Annalen, t. xv. (1879), pp. 238—240</td>
</tr>
<tr>
<td>662</td>
<td>On the double Θ-functions in connexion with a 16-nodal quartic surface</td>
<td>Crelle's Journal der Mathem., t. lxxxiii. (1877), pp. 210—219</td>
</tr>
<tr>
<td>663</td>
<td>Further investigations on the double Σ-functions</td>
<td>Crelle's Journal der Mathem., t. lxxxiii. (1877), pp. 220—233</td>
</tr>
<tr>
<td>664</td>
<td>On the 16-nodal quartic surface</td>
<td>Crelle's Journal der Mathem., t. lxxxiv. (1878), pp. 238—241</td>
</tr>
<tr>
<td>665</td>
<td>A memoir on the double Ω-functions</td>
<td>Crelle's Journal der Mathem., t. lxxxv. (1878), pp. 214—245</td>
</tr>
<tr>
<td>666</td>
<td>Sur un exemple de réduction d'intégrales abéliennes aux fonctions elliptiques</td>
<td>Comptes Rendus, t. lxxxv. (1877), pp. 265—268, 373—376, 426—429, 472—475</td>
</tr>
<tr>
<td>667</td>
<td>On the bicircular quartic—Addition to Professor Casey's memoir: "On a new form of tangential equation"</td>
<td>Phil. Trans., t. 167 (for 1877), pp. 441—460</td>
</tr>
<tr>
<td>672</td>
<td>On the game of mousetrap</td>
<td>Quart. Math. Journ., t. xv. (1878), pp. 8—10</td>
</tr>
<tr>
<td>674</td>
<td>Note on the construction of Cartesians</td>
<td>Quart. Math. Journ., t. xv. (1878), p. 34</td>
</tr>
</tbody>
</table>
676. Note on a theorem in determinants . . . 265

677. [Addition to Mr Glaisher's paper "Proof of Stirling's theorem"] 267
 Quart. Math. Journ., t. xv. (1878), pp. 63, 64

678. On a system of quadric surfaces . . . 269
 Quart. Math. Journ., t. xv. (1878), pp. 124, 125

679. On the regular solids . . . 270

680. On the Hessian of a quartic surface . . . 274
 Quart. Math. Journ., t. xv. (1878), pp. 141—144

681. On the derivatives of three binary quantics . . . 278

682. Formulae relating to the right line . . . 287

683. On the function arc sin (x + iy) . . . 290

684. On a relation between certain products of differences . . . 293

685. On Mr Cotterill's goniometrical problem . . . 295

686. On a functional equation . . . 298

687. Note on the function φ (x) = α’ (c - x) + β (c - x) - (x) . . . 307

688. Geometrical considerations on a solar eclipse . . . 310

689. On the geometrical representation of imaginary variables by
 a real correspondence of two planes . . . 316

690. On the theory of groups . . . 324

691. Note on Mr Monro's paper "On flexure of spaces" . . . 331

692. Addition to [578] memoir on the transformation of elliptic
 functions . . . 333
 Phil. Trans., vol. 169, Part II. (for 1878), pp. 419—424
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>693</td>
<td>A tenth memoir on quantics</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Phil. Trans., vol. 169, Part II. (for 1878), pp. 603—661</td>
<td></td>
</tr>
<tr>
<td>694</td>
<td>Desiderata and Suggestions</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>No. 1. The theory of groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American Journal of Mathematics, t. i. (1878), pp. 50—52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 2. The theory of groups; graphical representation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American Journal of Mathematics, t. i. (1878), pp. 174—176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 3. The Newton-Fourier imaginary problem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American Journal of Mathematics, t. II. (1879), p. 97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 4. The mechanical construction of conformable figures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American Journal of Mathematics, t. II. (1879), p. 186</td>
<td></td>
</tr>
<tr>
<td>695</td>
<td>A link-work for x^2: extract from a letter to Mr Sylvester</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>American Journal of Mathematics, t. i. (1878), p. 386</td>
<td></td>
</tr>
<tr>
<td>696</td>
<td>Calculation of the minimum N.G.F. of the binary seventhic</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>American Journal of Mathematics, t. ii. (1879), pp. 71—84</td>
<td></td>
</tr>
<tr>
<td>697</td>
<td>On the double S-functions</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. lxxxvii. (1879), pp. 74—81</td>
<td></td>
</tr>
<tr>
<td>698</td>
<td>On a theorem relating to covariants</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. lxxxvii. (1879), pp. 82, 83</td>
<td></td>
</tr>
<tr>
<td>699</td>
<td>On the triple S-functions</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. lxxxvii. (1879), pp. 134—138</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>On the tetrahedroid as a particular case of the 16-nodal quartic</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. lxxxvii. (1879), pp. 161—164</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>Algorithm for the characteristics of the triple S-functions</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. lxxxvii. (1879), pp. 165—169</td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>On the triple S-functions</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. lxxxvii. (1879), pp. 190—198</td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>On the addition of the double S-functions</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. lxxxvii. (1880), pp. 74—81</td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>A memoir on the single and double theta-functions</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Phil. Trans., vol. 171, Part III. (for 1880), pp. 897—1002</td>
<td></td>
</tr>
<tr>
<td>705</td>
<td>Problems and Solutions</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td>Mathematical Questions with their Solutions from the Educational</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Times, vols. xiv. to lxi. (1871—1894); for contents, see p. 615</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>706</td>
<td>On the distribution of electricity on two spherical surfaces</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Phil. Mag., Ser. 5, t. v. (1878), pp. 54—60</td>
<td></td>
</tr>
<tr>
<td>707</td>
<td>On the colouring of maps</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Geogr. Soc. Proc., t. t. (1879), pp. 259—261</td>
<td></td>
</tr>
<tr>
<td>708</td>
<td>Note sur la théorie des courbes de l'espace</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Assoc. Franç., Compt. Rend., t. IX. (1880), pp. 135—139</td>
<td></td>
</tr>
<tr>
<td>709</td>
<td>On the number of constants in the equation of the surface</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>$PS - QR = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidsskrift for Mathematik, Ser. 4, t. IV. (1880), pp. 145—148</td>
<td></td>
</tr>
<tr>
<td>710</td>
<td>On a differential equation</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Collectanea Mathematica, in memoriam Dominici Chelini, (Milan, Hoepli, 1881), pp. 17—26</td>
<td></td>
</tr>
<tr>
<td>711</td>
<td>On a diagram connected with the transformation of elliptic functions</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>British Association Report, 1881, p. 534</td>
<td></td>
</tr>
<tr>
<td>712</td>
<td>A partial differential equation connected with the simplest case of Abel's theorem</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>British Association Report, 1881, pp. 534, 535</td>
<td></td>
</tr>
<tr>
<td>713</td>
<td>Addition to Mr. Rowe's "Memoir on Abel's theorem"</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Phil. Trans., t. CLXXII. (1881), pp. 751—758</td>
<td></td>
</tr>
<tr>
<td>714</td>
<td>Various notes</td>
<td>37</td>
</tr>
<tr>
<td>715</td>
<td>Note on a system of algebraical equations</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. VII. (1878), pp. 17, 18</td>
<td></td>
</tr>
<tr>
<td>716</td>
<td>An illustration of the theory of the \wp-functions</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. VII. (1878), pp. 27—32</td>
<td></td>
</tr>
<tr>
<td>717</td>
<td>On the triple theta-functions</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. VII. (1878), pp. 48—50</td>
<td></td>
</tr>
</tbody>
</table>
718. Addition to Mr Genese's paper "On the theory of envelopes".
Messenger of Mathematics, t. vii. (1878), pp. 62, 63

719. Suggestion of a mechanical integrator for the calculation of
\[\int (Xdx + Ydy) \] along an arbitrary path
52
Messenger of Mathematics, t. vii. (1878), pp. 92–95; British Association Report, 1877, pp. 18–20

720. Note on Arbogast's method of derivations
Messenger of Mathematics, t. vii. (1878), p. 158

721. Formula involving the seventh roots of unity
Messenger of Mathematics, t. vii. (1878), pp. 177–182

722. A problem in partitions
Messenger of Mathematics, t. vii. (1878), pp. 187, 188

723. Various notes

724. On the deformation of the model of a hyperboloid
Messenger of Mathematics, t. viii. (1879), pp. 51, 52

725. New formulae for the integration of
\[\frac{dx}{\sqrt{X}} + \frac{dy}{\sqrt{Y}} = 0 \]
68
Messenger of Mathematics, t. viii. (1879), pp. 60–62

726. A formula by Gauss for the calculation of \(\log 2 \) and certain other logarithms
Messenger of Mathematics, t. viii. (1879), pp. 125, 126

727. Equation of the wave-surface in elliptic coordinates
Messenger of Mathematics, t. viii. (1879), pp. 190, 191

728. A theorem in elliptic functions

729. On a theorem relating to conformable figures

730. [Addition to Mr Spottiswoode's paper "On the twenty-one coordinates of a conic in space"]

731. On the binomial equation \(x^a - 1 = 0 \); trisection and quartisection

732. A theorem in spherical trigonometry
733. On a formula of elimination 100

734. On the kinematics of a plane 103
 Quart. Math. Journ., t. xvi. (1879), pp. 1—8

735. Note on the theory of apsidal surfaces 111

736. Application of the Newton-Fourier method to an imaginary
 root of an equation 114
 Quart. Math. Journ., t. xvi. (1879), pp. 179—185

737. On a covariant formula 122

738. Note on a hypergeometric series 125
 Quart. Math. Journ., t. xvi. (1879), pp. 268—270

739. Note on the octahedron function 128
 Quart. Math. Journ., t. xvi. (1879), pp. 280, 281

740. On certain algebraical identities 130

741. On a theorem of Abel's relating to a quintic equation .. 132
 Camb. Phil. Soc. Proc., t. iii. (1880), pp. 155—159

742. On the transformation of coordinates 136
 Camb. Phil. Soc. Proc., t. iii. (1880), pp. 178—184

743. On the Newton-Fourier problem 143

744. Table of $\Delta^m0^n + \Pi (m) \text{ up to } m = n = 20$ 144
 Camb. Phil. Trans., t. XIII. (1883), pp. 1—4

745. On the Schwarzian derivative, and the polyhedral functions 148
 Camb. Phil. Trans., t. XIII. (1883), pp. 5—68

*746. Higher Plane Curves .. 217
 Salmon's Higher Plane Curves, (3rd ed., 1879), Preface

747. Note on the degenerate forms of curves 218

748. On the bitangents of a quartic 221

*749. Solid Geometry .. 224
 Salmon's Treatise on the analytic geometry of three dimensions,
 (3rd ed., 1874), Preface
750. On the theory of reciprocal surfaces ... 225
 Salmon's Treatise on the analytic geometry of three dimensions,
 (3rd ed., 1874), pp. 539—550

751. Note on Riemann's paper "Versuch einer allgemeinen Auffassung
 der Integration und Differentiation," Werke, pp. 331—
 344 .. 235
 Mathematische Annalen, t. xvi. (1880), pp. 81, 82

752. On the finite groups of linear transformations of a variable;
 with a correction .. 237
 Mathematische Annalen, t. xvi. (1880), pp. 260—263; 439, 440

753. On a theorem relating to the multiple theta-functions 242
 Mathematische Annalen, t. xvii. (1880), pp. 115—122

754. On the connection of certain formulae in elliptic functions 250
 Messenger of Mathematics, t. ix. (1880), pp. 23—25

755. On the matrix (a, b), and in connection therewith the function
 $\begin{vmatrix} ax+b \\ cx+d \end{vmatrix}$.. 252
 Messenger of Mathematics, t. ix. (1880), pp. 104—109

756. A geometrical construction relating to imaginary quantities 258
 Messenger of Mathematics, t. x. (1881), pp. 1—3

757. On a Smith's Prize question, relating to potentials 261
 Messenger of Mathematics, t. xi. (1882), pp. 13—18

758. Solution of a Senate-House problem .. 265
 Messenger of Mathematics, t. xi. (1882), pp. 23—25

759. Illustration of a theorem in the theory of equations 268
 Messenger of Mathematics, t. xi. (1882), pp. 111—113

760. Reduction of $\int \frac{dx}{(1-x^2)^2}$ to elliptic integrals 270
 Messenger of Mathematics, t. xi. (1882), pp. 142, 143

761. On the theorem of the finite number of the covariants of a
 binary quantic .. 272

762. On Schubert's method for the contacts of a line with a surface 281
 Quart. Math. Journ., t. xvii. (1881), pp. 244—258

763. On the theorems of the 2, 4, 8, and 16 squares 294
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>764.</td>
<td>The binomial equation $x^9 - 1 = 0$; quinquisection</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>Proc. Lond. Math. Soc., t. xii. (1881), pp. 15, 16</td>
<td></td>
</tr>
<tr>
<td>765.</td>
<td>On the flexure and equilibrium of a skew surface</td>
<td>317</td>
</tr>
<tr>
<td>766.</td>
<td>On the geodesic curvature of a curve on a surface</td>
<td>323</td>
</tr>
<tr>
<td>767.</td>
<td>On the Gaussian theory of surfaces</td>
<td>331</td>
</tr>
<tr>
<td>768.</td>
<td>Note on Landen's theorem</td>
<td>337</td>
</tr>
<tr>
<td>769.</td>
<td>On a formula relating to elliptic integrals of the third kind</td>
<td>340</td>
</tr>
<tr>
<td>770.</td>
<td>On the 34 concomitants of the ternary cubic</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>American Journal of Mathematics, t. iv. (1881), pp. 1—15</td>
<td></td>
</tr>
<tr>
<td>771.</td>
<td>Specimen of a literal table for binary quantics, otherwise a partition table</td>
<td>357</td>
</tr>
<tr>
<td>772.</td>
<td>On the analytical forms called trees</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>American Journal of Mathematics, t. iv. (1881), pp. 266—268</td>
<td></td>
</tr>
<tr>
<td>773.</td>
<td>On the 8-square imaginaries</td>
<td>368</td>
</tr>
<tr>
<td>774.</td>
<td>Tables for the binary sextic</td>
<td>372</td>
</tr>
<tr>
<td>775.</td>
<td>Tables of covariants of the binary sextic</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Written in 1894: now first published.</td>
<td></td>
</tr>
<tr>
<td>776.</td>
<td>On the Jacobian sextic equation</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>Quart. Math. Journ., t. xviii. (1882), pp. 52—65</td>
<td></td>
</tr>
<tr>
<td>777.</td>
<td>A solvable case of the quintic equation</td>
<td>402</td>
</tr>
<tr>
<td>778.</td>
<td>[Addition to Mr Hudson's paper "On equal roots of equations"]</td>
<td>405</td>
</tr>
<tr>
<td>779.</td>
<td>[Note on Mr Jeffery's paper "On certain quartic curves, which have a cusp at infinity, whereat the line at infinity is a tangent"]</td>
<td>408</td>
</tr>
<tr>
<td>780.</td>
<td>[Addition to Mr Hammond's paper "Note on an exceptional case in which the fundamental postulate of Professor Sylvester's theory of tannisage fails"]</td>
<td>409</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>781.</td>
<td>On the automorphic transformation of the binary cubic function</td>
<td>411</td>
</tr>
<tr>
<td>782.</td>
<td>On Monge’s “Mémoire sur la théorie des déblais et des remblais”</td>
<td>417</td>
</tr>
<tr>
<td>783.</td>
<td>On Mr. Wilkinson’s rectangular transformation</td>
<td>421</td>
</tr>
<tr>
<td>784.</td>
<td>Presidential Address to the British Association, Southport, September 1883</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>British Association Report, 1883, pp. 3—37</td>
<td></td>
</tr>
<tr>
<td>785.</td>
<td>Curve</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>Encyclopedia Britannica, 9th ed., t. vi. (1878), pp. 716—728</td>
<td></td>
</tr>
<tr>
<td>786.</td>
<td>Equation</td>
<td>490</td>
</tr>
<tr>
<td>787.</td>
<td>Function</td>
<td>522</td>
</tr>
<tr>
<td>788.</td>
<td>Galois</td>
<td>543</td>
</tr>
<tr>
<td></td>
<td>Encyclopedia Britannica, 9th ed., t. x. (1879), p. 48</td>
<td></td>
</tr>
<tr>
<td>789.</td>
<td>Gauss</td>
<td>544</td>
</tr>
<tr>
<td>790.</td>
<td>Geometry (analytical)</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>Encyclopedia Britannica, 9th ed., t. x. (1879), pp. 408—420</td>
<td></td>
</tr>
<tr>
<td>791.</td>
<td>Landen</td>
<td>583</td>
</tr>
<tr>
<td>792.</td>
<td>Locus</td>
<td>585</td>
</tr>
<tr>
<td>793.</td>
<td>Monge</td>
<td>586</td>
</tr>
<tr>
<td></td>
<td>Encyclopedia Britannica, 9th ed., t. xvi. (1883), pp. 738, 739</td>
<td></td>
</tr>
<tr>
<td>794.</td>
<td>Numbers (partition of)</td>
<td>589</td>
</tr>
<tr>
<td>795.</td>
<td>Numbers (theory of)</td>
<td>592</td>
</tr>
<tr>
<td>796.</td>
<td>Series</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Encyclopedia Britannica, 9th ed., t. xxii. (1886), pp. 677—682</td>
<td></td>
</tr>
<tr>
<td>797.</td>
<td>Surface</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>Encyclopedia Britannica, 9th ed., t. xxii. (1887), pp. 668—672</td>
<td></td>
</tr>
<tr>
<td>798.</td>
<td>Wallis (John)</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>Encyclopedia Britannica, 9th ed., t. xxiv. (1888), pp. 331, 332</td>
<td></td>
</tr>
</tbody>
</table>

Portrait To face Title.
VOLUME XII.

799. On curvilinear coordinates
Quart. Math. Journ., t. xix. (1883), pp. 1—22

800. Note on the standard solutions of a system of linear equations

801. On seminvariants

802. Note on Captain MacMahon’s paper “On the differential equation $X^{-i}dx + Y^{-i}dy + Z^{-i}dz = 0$”

803. On Mr Anglin’s formula for the successive powers of the root of an algebraical equation
Quart. Math. Journ., t. xix. (1883), pp. 223, 224

804. On the elliptic-function solution of the equation $x^2 + y^2 - 1 = 0$

805. Note on Abel’s theorem

806. Determination of the order of a surface
Messenger of Mathematics, t. xii. (1883), pp. 29—32

807. A proof of Wilson’s theorem
Messenger of Mathematics, t. xii. (1883), p. 41

808. Note on a form of the modular equation in the transformation of the third order
Messenger of Mathematics, t. xii. (1883), pp. 173, 174

809. Schröter’s construction of the regular pentagon
Messenger of Mathematics, t. xii. (1883), p. 177

810. Note on a system of equations
Messenger of Mathematics, t. xii. (1883), pp. 191, 192
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Contents of Volume XII.</td>
<td></td>
</tr>
<tr>
<td>811</td>
<td>On the linear transformation of the theta-functions</td>
<td>Messenger of Mathematics, t. xiii. (1884), pp. 54—60</td>
</tr>
<tr>
<td>812</td>
<td>On Archimedes' theorem for the surface of a cylinder</td>
<td>Messenger of Mathematics, t. xiii. (1884), pp. 107, 108</td>
</tr>
<tr>
<td>813</td>
<td>[Note on Mr Griffiths’ paper “On a deduction from the elliptic-integral formula $y = \sin (A + B + C + ...)$”]</td>
<td>Proc. Lond. Math. Soc., t. xv. (1884), p. 81</td>
</tr>
<tr>
<td>815</td>
<td>The binomial equation $x^n - 1 = 0$; quinquisection. Second part</td>
<td>Proc. Lond. Math. Soc., t. xvi. (1885), pp. 61—63</td>
</tr>
<tr>
<td>817</td>
<td>On the sixteen-nodal quartic surface</td>
<td>Crelle’s Journal der Mathem., t. xciv. (1883), pp. 270—272</td>
</tr>
<tr>
<td>818</td>
<td>Note on hyperelliptic integrals of the first order</td>
<td>Crelle’s Journal der Mathem., t. xcviii. (1885), pp. 95, 96</td>
</tr>
<tr>
<td>819</td>
<td>On two cases of the quadric transformation between two planes</td>
<td>Johns Hopkins University Circulars, No. 13 (1882), pp. 178, 179</td>
</tr>
<tr>
<td>820</td>
<td>On a problem of analytical geometry</td>
<td>Johns Hopkins University Circulars, No. 15 (1882), p. 209</td>
</tr>
<tr>
<td>821</td>
<td>On the geometrical representation of an equation between two variables</td>
<td>Johns Hopkins University Circulars, No. 15 (1882), p. 210</td>
</tr>
<tr>
<td>822</td>
<td>On associative imaginaries</td>
<td>Johns Hopkins University Circulars, No. 15 (1882), pp. 211, 212</td>
</tr>
<tr>
<td>823</td>
<td>On the geometrical interpretation of certain formula in elliptic functions</td>
<td>Johns Hopkins University Circulars, No. 17 (1882), p. 238</td>
</tr>
<tr>
<td>824</td>
<td>Note on the formulae of trigonometry</td>
<td>Johns Hopkins University Circulars, No. 17 (1882), p. 241</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Journal and Volume</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>826</td>
<td>Note on a partition series</td>
<td>American Journal of Mathematics, t. vi. (1884), pp. 63, 64</td>
</tr>
<tr>
<td>828</td>
<td>A memoir on seminvariants</td>
<td>American Journal of Mathematics, t. vii. (1885), pp. 1—25</td>
</tr>
<tr>
<td>829</td>
<td>Tables of the symmetric functions of the roots, to the degree 10,</td>
<td>American Journal of Mathematics, t. vn. (1885), pp. 47—56</td>
</tr>
<tr>
<td>830</td>
<td>Non-unitary partition tables</td>
<td>American Journal of Mathematics, t. vii. (1885), pp. 57, 58</td>
</tr>
<tr>
<td>831</td>
<td>Seminvariant tables</td>
<td>American Journal of Mathematics, t. vii. (1885), pp. 59—73</td>
</tr>
<tr>
<td>832</td>
<td>Note on an apparent difficulty in the theory of curves, when the coordinates of a point are given as functions of a variable parameter</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 12—14</td>
</tr>
<tr>
<td>833</td>
<td>On a formula in elliptic functions</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 21, 22</td>
</tr>
<tr>
<td>834</td>
<td>On the addition of the elliptic functions</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 56—61</td>
</tr>
<tr>
<td>835</td>
<td>On Cardan's solution of a cubic equation</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 96, 97</td>
</tr>
<tr>
<td>836</td>
<td>On the quaternion equation $qQ - Qq' = 0$</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 108—112</td>
</tr>
<tr>
<td>837</td>
<td>On the so-called D'Alembert Carnot geometrical paradox</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 113, 114</td>
</tr>
<tr>
<td>839</td>
<td>On the matrical equation $qQ - Qq' = 0$</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 176—178</td>
</tr>
<tr>
<td>840</td>
<td>On Mascheroni's geometry of the compass</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 179—181</td>
</tr>
<tr>
<td>841</td>
<td>On a differential operator</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 190, 191</td>
</tr>
<tr>
<td>842</td>
<td>On the value of $\tan(\sin \theta) - \sin(\tan \theta)$</td>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 191, 192</td>
</tr>
</tbody>
</table>
Contents of Volume XII.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>843</td>
<td>On the quadri-quadric curve in connexion with the theory of elliptic functions</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>Mathematische Annalen, t. xxv. (1885), pp. 152—156</td>
<td></td>
</tr>
<tr>
<td>844</td>
<td>On a theorem relating to seminvariants</td>
<td>326</td>
</tr>
<tr>
<td>845</td>
<td>On the orthomorphosis of the circle into the parabola</td>
<td>328</td>
</tr>
<tr>
<td>846</td>
<td>A verification in regard to the linear transformation of the theta-functions</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Quart. Math. Journ., t. xxi. (1886), pp. 77—84</td>
<td></td>
</tr>
<tr>
<td>847</td>
<td>On the theory of seminvariants</td>
<td>344</td>
</tr>
<tr>
<td>848</td>
<td>On the transformation of the double theta-functions</td>
<td>358</td>
</tr>
<tr>
<td>849</td>
<td>On the invariants of a linear differential equation</td>
<td>390</td>
</tr>
<tr>
<td>850</td>
<td>On linear differential equations</td>
<td>394</td>
</tr>
<tr>
<td>851</td>
<td>On linear differential equations: the theory of decomposition</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>Quart. Math. Journ., t. xxi. (1886), pp. 331—335</td>
<td></td>
</tr>
<tr>
<td>852</td>
<td>Note sur le mémoire de M. Picard "Sur les intégrales de différentielles totales algébriques de première espèce"</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>Bull. des Sciences Math., 2ème Sér., t. x. (1886), pp. 75—78</td>
<td></td>
</tr>
<tr>
<td>853</td>
<td>Note on a formula for Δ^ν/n^i when n, i are very large numbers</td>
<td>412</td>
</tr>
<tr>
<td>854</td>
<td>An algebraical transformation</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xv. (1886), pp. 58, 59</td>
<td></td>
</tr>
<tr>
<td>855</td>
<td>Solution of $(a, b, c, d) = (a^2, b^2, c^2, d^2)$</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xv. (1886), pp. 59—61</td>
<td></td>
</tr>
<tr>
<td>856</td>
<td>Note on a cubic equation</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xv. (1886), pp. 62—64</td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>Analytical geometrical note on the conic</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xv. (1886), p. 192</td>
<td></td>
</tr>
<tr>
<td>858</td>
<td>Comparison of the Weierstrassian and Jacobian elliptic functions</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xvi. (1887), pp. 129—132</td>
<td></td>
</tr>
</tbody>
</table>
859. On the complex of lines which meet a unicursal quartic curve

860. On Briot and Bouquet's theory of the differential equation

\[F\left(u, \frac{du}{dz}\right) = 0 \]

861. Note on a formula relating to the zero-value of a theta-function
Crelle's Journal der Mathem., t. c. (1887), pp. 87, 88

862. Note on the theory of linear differential equations
Crelle's Journal der Mathem., t. c. (1887), pp. 286—295

863. Note on the theory of linear differential equations
Crelle's Journal der Mathem., t. c. (1887), pp. 209—213

864. On Rudio's inverse centro-surface

865. On multiple algebra

866. Note on Kiepert's L-equations, in the transformation of elliptic functions
Mathematische Annalen, t. xxx. (1887), pp. 75—77

867. Note on the Jacobian sextic equation
Mathematische Annalen, t. xxx. (1887), pp. 78—84

868. On the intersection of curves
Mathematische Annalen, t. xxx. (1887), pp. 85—90

869. On the transformation of elliptic functions

870. On the transformation of elliptic functions (sequel)
American Journal of Mathematics, t. x. (1888), pp. 71—93

871. A case of complex multiplication with imaginary modulus arising out of the cubic transformation in elliptic functions

*872. On the finite number of the covariants of a binary quartic
Mathematische Annalen, t. xxxiv. (1889), pp. 319, 320

873. System of equations for three circles which cut each other at given angles
Messenger of Mathematics, t. xvii. (1888), pp. 18—21

874. Note on the Legendrian coefficients of the second kind
Messenger of Mathematics, t. xvii. (1888), pp. 21—23
875. On the system of three circles which cut each other at given angles and have their centres in a line 564
 Messenger of Mathematics, t. xvil. (1888), pp. 60—69

876. On systems of rays ... 571
 Messenger of Mathematics, t. xvii. (1888), pp. 73—78

877. Note on the two relations connecting the distances of four points on a circle ... 576
 Messenger of Mathematics, t. xvii. (1888), pp. 94, 95

878. Note on the anharmonic ratio equation 578
 Messenger of Mathematics, t. xvii. (1888), pp. 95, 96

879. Note on the differential equation \(\frac{dx}{\sqrt{(1-x^2)}} + \frac{dy}{\sqrt{(1-y^2)}} = 0 \) 580
 Messenger of Mathematics, t. xviii. (1889), p. 90

880. Note on the relation between the distances of five points in space ... 581
 Messenger of Mathematics, t. xviii. (1889), pp. 100—102

881. On Hermite's H-product theorem 584
 Messenger of Mathematics, t. xviii. (1889), pp. 104—107

882. A correspondence of confocal Cartesians with the right lines of a hyperboloid ... 587
 Messenger of Mathematics, t. xviii. (1889), pp. 128—130

883. Analytical formulae in regard to an octad of points 590
 Messenger of Mathematics, t. xvili. (1889), pp. 149—152

884. Note sur les surfaces minima et le théorème de Joachimsthal 594
 Comptes Rendus, t. cxi. (1888), pp. 995, 996

885. On the Diophantine relation, \(y^2 + y^2 = \text{Square} \) ... 596

886. On the surfaces with plane or spherical curves of curvature 601

887. On the theory of groups ... 639
 American Journal of Mathematics, t. xi. (1889), pp. 139—157
VOLUME XIII.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>888</td>
<td>On a form of quartic surface with twelve nodes</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>British Association Report, (1886), pp. 540, 541</td>
<td></td>
</tr>
<tr>
<td>889</td>
<td>On a differential equation and the construction of Milner's lamp</td>
<td>3</td>
</tr>
<tr>
<td>890</td>
<td>Note on the hydrodynamical equations</td>
<td>6</td>
</tr>
<tr>
<td>891</td>
<td>On the binodal quartic and the graphical representation of the elliptic functions</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Camb. Phil. Soc. Trans., t. xiv (1889), pp. 484—494</td>
<td></td>
</tr>
<tr>
<td>892</td>
<td>Note on the orthomorphic transformation of a circle into itself</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Edinburgh Math. Soc. Proc., t. viii (1890), pp. 91, 92</td>
<td></td>
</tr>
<tr>
<td>893</td>
<td>The bitangents of the quintic</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Annals of Mathematics, t. v (1890), pp. 109, 110</td>
<td></td>
</tr>
<tr>
<td>894</td>
<td>An investigation by Wallis of his expression for π</td>
<td>22</td>
</tr>
<tr>
<td>895</td>
<td>A theorem on trees</td>
<td>26</td>
</tr>
<tr>
<td>896</td>
<td>A transformation in elliptic functions</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Quart. Math. Journ., t. xxiv (1890), pp. 259—262</td>
<td></td>
</tr>
<tr>
<td>897</td>
<td>Sur les racines d'une équation algébrique</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. cx (1890), pp. 174—176, 215—218</td>
<td></td>
</tr>
<tr>
<td>898</td>
<td>Sur l'équation modulaire pour la transformation de l'ordre</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. cxi (1890), pp. 447—449</td>
<td></td>
</tr>
<tr>
<td>899</td>
<td>Sur les surfaces minima</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Comptes Rendus, t. cxi (1890), pp. 953, 954</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>James Joseph Sylvester</td>
<td>43</td>
</tr>
<tr>
<td>Note on the sums of two series</td>
<td>Messenger of Mathematics, t. xix (1890), pp. 29–31</td>
<td>49</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>On the foci of a quadric surface</td>
<td>Messenger of Mathematics, t. xix (1890), pp. 113–117</td>
<td>51</td>
</tr>
<tr>
<td>On Latin squares</td>
<td>Messenger of Mathematics, t. xix (1890), pp. 135–137</td>
<td>55</td>
</tr>
<tr>
<td>Note on reciprocal lines</td>
<td>Messenger of Mathematics, t. xix (1890), pp. 174, 175</td>
<td>58</td>
</tr>
<tr>
<td>On the equation $x^n - 1 = 0$</td>
<td>Messenger of Mathematics, t. xx (1891), pp. 59, 60; 120</td>
<td>60</td>
</tr>
<tr>
<td>Note on Schläfli's modular equation for the cubic transformation; with a correction</td>
<td>Messenger of Mathematics, t. xx (1891), pp. 184–188</td>
<td>64</td>
</tr>
<tr>
<td>Note on the ninth roots of unity</td>
<td>Messenger of Mathematics, t. xx (1891), p. 63</td>
<td>66</td>
</tr>
<tr>
<td>On two invariants of a quadri-quadric function</td>
<td>Messenger of Mathematics, t. xx (1891), pp. 68, 69</td>
<td>67</td>
</tr>
<tr>
<td>On a particular case of Kummer's differential equation of the third order</td>
<td>Messenger of Mathematics, t. xx (1891), pp. 75–79</td>
<td>69</td>
</tr>
<tr>
<td>Note on the involutant of two matrices</td>
<td>Messenger of Mathematics, t. xx (1891), pp. 136, 137</td>
<td>74</td>
</tr>
<tr>
<td>On an algebraical identity relating to the six coordinates of a line</td>
<td>Messenger of Mathematics, t. xx (1891), pp. 138–140</td>
<td>76</td>
</tr>
<tr>
<td>On the notion of a plane curve of a given order</td>
<td>Messenger of Mathematics, t. xx (1891), pp. 148–150</td>
<td>79</td>
</tr>
<tr>
<td>On the epitrochoid</td>
<td>Messenger of Mathematics, t. xx (1891), pp. 150–158</td>
<td>81</td>
</tr>
<tr>
<td>On a soluble quintic equation</td>
<td>American Journal of Mathematics, t. xiii (1891), pp. 53–58</td>
<td>88</td>
</tr>
</tbody>
</table>
918. On the substitution-groups for two, three, four, five, six, seven, and eight letters.
Quart. Math. Journ., t. xxv (1891), pp. 71—88, 137—155

919. On the problem of tactions
Quart. Math. Journ., t. xxv (1891), pp. 104—127

920. On orthomorphosis

921. On some problems of orthomorphosis
Crelle's Journal der Mathem., t. cvii (1891), pp. 262—277

922. Note on the lunar theory.

923. Note on a hyperdeterminant identity
Messenger of Mathematics, t. xxi (1892), pp. 131, 132

924. On the non-existence of a special group of points
Messenger of Mathematics, t. xxi (1892), pp. 132, 133

925. On Waring's formula for the sum of the mth powers of the roots of an equation
Messenger of Mathematics, t. xxi (1892), pp. 133—137

926. Corrected seminvariant tables for the weights 11 and 12
American Journal of Mathematics, t. xiv (1892), pp. 195—200

927. On Clifford's paper "On syzygetic relations among the powers of linear quantics"

928. On the analytical theory of the congruency
Proc. Lond. Math. Soc., t. xxiii (1892), pp. 185—188

929. Note on the skew surfaces applicable upon a given skew surface.

930. Sur la surface des ondes
Annali di Matematica, Ser. ii, t. xx (1892), pp. 1—18

931. On some formulæ of Codazzi and Weingarten in relation to the application of surfaces to each other

932. On symmetric functions and seminvariants
American Journal of Mathematics, t. xv (1893), pp. 1—74
933. Tables of pure reciprocants to the weight 8
American Journal of Mathematics, t. xv (1893), pp. 75—77

934. Note on the so-called quotient G/H in the theory of groups
American Journal of Mathematics, t. xv (1893), pp. 387, 388

935. Sur la fonction modulaire $\chi \omega$
Comptes Rendus, t. cxvi (1893), pp. 1339—1343

936. Note on uniform convergence

937. Note on the orthotomic curve of a system of lines in a plane
Messenger of Mathematics, t. xxii (1893), pp. 45, 46

938. On two cubic equations
Messenger of Mathematics, t. xxii (1893), pp. 69—71

939. On a case of the involution $AF + BG + CH = 0$, where A, B, C, F, G, H are ternary quadrics
Messenger of Mathematics, t. xxii (1893), pp. 182—186

940. On the development of $(1 + n^2x)^m$
Messenger of Mathematics, t. xxii (1893), pp. 186—190

941. Note on the partial differential equation
\[Rr + Ss + Tt + U(s^2 - rt) - V = 0 \]
Quart. Math. Journ., t. xxvi (1893), pp. 1—5

942. On seminvariants
Quart. Math. Journ., t. xxvi (1893), pp. 66—69

943. On reciprocants and differential invariants

944. On Pfaff-invariants

945. Note on lacunary functions
Quart. Math. Journ., t. xxvi (1893), pp. 279—281

946. Note on the theory of orthomorphosis

947. On a system of two tetrads of circles: and other systems of two tetrads
Camb. Phil. Soc. Proc., t. viii (1893), pp. 54—59
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>948</td>
<td>Report of a Committee appointed for the purpose of carrying on the tables connected with the Pellian equation from the point where the work was left by Degen in 1817.</td>
<td>British Association Report, (1893), pp. 73–120</td>
</tr>
<tr>
<td>949</td>
<td>On Halphen's characteristic n, in the theory of curves in space</td>
<td>Crelle's Journal der Mathem., t. cxi (1893), pp. 347–352</td>
</tr>
<tr>
<td>950</td>
<td>On the sextic resolvent equations of Jacobi and Kronecker</td>
<td>Crelle's Journal der Mathem., t. cxiii (1894), pp. 42–49</td>
</tr>
<tr>
<td>951</td>
<td>Non-Euclidian geometry</td>
<td>Camb. Phil. Soc. Trans., t. xv (1894), pp. 37–61</td>
</tr>
<tr>
<td>952</td>
<td>On the kinematics of a plane, and in particular on three-bar motion: and on a curve-tracing mechanism</td>
<td>Camb. Phil. Soc. Trans., t. xv (1894), pp. 391–402</td>
</tr>
<tr>
<td>953</td>
<td>On the nine-points circle</td>
<td>Messenger of Mathematics, t. xxiii (1894), pp. 23–25</td>
</tr>
<tr>
<td>954</td>
<td>On the nine-points circle of a plane triangle</td>
<td>Messenger of Mathematics, t. xxiii (1894), pp. 25–27</td>
</tr>
<tr>
<td>955</td>
<td>The numerical value of $\Pi (r) = \Gamma (1+i)$</td>
<td>Messenger of Mathematics, t. xxiii (1894), pp. 36–38</td>
</tr>
<tr>
<td>956</td>
<td>On Richelot's integral of the differential equation $\frac{dx}{\sqrt{X}} + \frac{dy}{\sqrt{Y}} = 0$</td>
<td>Messenger of Mathematics, t. xxiii (1894), pp. 42–47</td>
</tr>
<tr>
<td>957</td>
<td>Illustrations of Sylow's theorems on groups</td>
<td>Messenger of Mathematics, t. xxiii (1894), pp. 59–62</td>
</tr>
<tr>
<td>958</td>
<td>On the surface of the order n which passes through a given cubic curve</td>
<td>Messenger of Mathematics, t. xxiii (1894), pp. 79, 80</td>
</tr>
<tr>
<td>959</td>
<td>Note on Plücker's equations</td>
<td>Messenger of Mathematics, t. xxiv (1895), pp. 23, 24</td>
</tr>
<tr>
<td>960</td>
<td>On the circle of curvature at any point of an ellipse</td>
<td>Messenger of Mathematics, t. xxiv (1895), pp. 47, 48</td>
</tr>
<tr>
<td>961</td>
<td>A trigonometrical identity</td>
<td>Messenger of Mathematics, t. xxiv (1895), pp. 49–51</td>
</tr>
</tbody>
</table>

*967. An elementary treatise on elliptic functions First edition, 1876, second edition, 1895 560
INDEX

TO THE

THIRTEEN VOLUMES.
INDEX.

[Volumes are indicated by Roman numerals.
Pages are indicated by Arabic numerals.]

Abbildung: the term, vii, 248; theory, vii, 249–50; (see also Transformation of Surfaces).

Abel, N. H.: doubly infinite products, i, 120; inverse elliptic functions, i, 136, 156, 173; modular functions, i, 227; a functional equation, iv, 5–6; elliptic integrals, iv, 63, x, 139; quintic equations, v, 53–61, xi, 11, xiii, 88; divergent series, viii, 494; a theorem of, x, 57; theory of equations, xi, 132–5, 455, 513, 518; elliptic functions, xi, 452; series, xi, 627.

Abelian Functions: Riemann, vi, 2; p = 3, x, 432–6; early history, xi, 453–4; connected with square roots of sextic and octic functions, xi, 483; the term, xi, 533–4; bitangents of plane quartic, xii, 74; hyperelliptic integrals of first order, xii, 98–9; memoir on theta functions and, xii, 109–216, (introductory, xii, 109; Abel's theorem, xii, 110–20; its proof, xii, 120–31; the major function, xii, 132–48, 149–56; miscellaneous investigations, xii, 157–96; nodal quartic, xii, 196–208; functions T, U, \(U' \), \(U'' \), xii, 209–16).

Abelian Integrals: notes on, i, 366–9; and covariants, ii, 189–91; Liouville, iv, 546; Riemann, v, 521; reduction to elliptic integrals, x, 214–22; deficiency of ground-curve, xi, 36; first kind of, xii, 38, 408–11; pure theorem for, xii, 110, 112–6, 119–20, 121, 129–30; affected theorem for, xii, 110, 116–7, 121, 130–1, 164–7.

Abel's Theorem: ii, 45, 95, xi, 27–8, xii, 30; applied to porisms, iv, 297; Rowe's memoir on, xi, 29–36; note on, xii, 38–41; proof, xii, 120; semi-cubical parabola, xii, 180–6; quadri-quadratic curve, xii, 156–9, 292–8; other curves, xii, 189–96.

Absolute: and theory of distance, ii, 583–92, 604, v, 550; normals of a conic, iv, 74, 77; theory of evolute, v, 476–9; effect on locus in relation to triangle, vi, 53–64; Cayley's theory of, vii, xxxvi–vii; evolutes and parallel curves, viii, 31–44; centro-surface of ellipsoid, viii, 316, 320; in hypergeometry, viii, 499–13, xii, 481–504; the term, xii, 42; minimal surfaces, xiii, 42.

Acceleration: secular (see Secular Acceleration).

Acnodal: defined, v, 403, 551, xi, 228.

Acnode: defined, iv, 181, v, 295, 521, vi, 585, xi, 630.

Addition: of elliptic functions, i, 540–9, 589, xi, 73–7, 454, 530, xii, 294–8; of double theta functions, x, 455–62.

Address: presidential to British Association, xi, 429–59.

Adjoint Curve: ix, 304–7.

Adjoint Linear Form: in quartics, ii, 315.
AGGREGATE—APSIDAL.

Aggregate: and relation in abstract geometry, vi, 459.

Air: effect on pendulum, iv, 541.

Algebra: non-commutative, i, 128—31, 391; notion and boundaries, v, 292—4, 620; Cayley founder of modern, viii, xxx; geometrical illustration of theorems in, ix, 16—7, 21—39; operation connected with covariants, ix, 537—42; expansion theorem, x, 57; system of equations, xi, 39—40; identities, xi, 63—4, 130—1; and time, xi, 443; origin, xi, 445—8; in Greece, xi, 446; and logic, xi, 459, xii, 459; algebraical equations, xi, 506—21; function in, xi, 523—4; Sylvester's work, xiii, 46; Sylvester's principles of universal, xiii, 47; Sylvester on art and, xiii, 48; (see also Multiple Algebra).

Algebraic Curves (see Curves).

Algebraic Equations (see Equations).

Algebraic Theorems: x, 594, 692, 695.

Algebras, Non-commutative: i, 128—31, 391.

Algorithm: for characteristics of triple theta functions, x, 441—5, 452.

Allink: the term, v, 521.

Allotrious: the term, ix, 204.

Alpine Club: Cayley a member, viii, xi.

Alternant: of operators, xiii, 400—1.

Altitude: of trees, ix, 429—60.

America: Cayley's visit to, viii, xxi.

American Mathematical Journal: Sylvester's contributions to, xiii, 47.

Ampère, A. M.: inertia, iv, 563, 584; recirocants, xiii, 366.

Amphigram: the term, vii, 268.

Ampululate: the term, vi, 101.

Anallagmatic: the term, vii, 246.

Analogues: of Pascal's theorem, i, 426, 427.

Analysis: Bernoulli's numbers in, ix, 259—62; (see also Combinatory Analysis).

Analytical Geometry (see Geometry, analytical).

Analytical Representation of Curves (see Representation).

Analytical Theorem: as to Euler's equation, vii, 261—2.

Analytical Theory of Conics (see Conics).

Anchor Ring: and cycloidal, ix, 18.

Angle: interpreted with reference to two points, vi, 497.

Angular Distance (see Distance).

Anomaly: expansion of the true, iii, 139—43; and elliptic motion, iv, 521, 523.

Anti-circle: the term, vii, 120.

Anti-conic: the term, ix, 65.

Anti-foci: and foci, vii, 567.

Anti-point: the term, vi, 499—300, ix, 65, xiii, 11; problem and solution, vii, 593; orthomorphism xiii, 184.

Aplati (see Penultimate Forms).

Apoclastic: the term, xii, 226.

Applicable Surfaces (see Skew Surfaces, Surfaces).

Apollonius: tactions, xiii, 132.

Apsidal Surfaces: theory of, xi, 111—3.
Arbelon: the term, xii, 57.

Archimedes: and statics, xi, 446; theorem for surface of cylinder, xii, 56—7.

Argand, R.: imaginaries in plane geometry, xii, 460, 468.

Arithmetic: in Greece, xi, 446; Gauss's work, xi, 544.

Aronhold, S. H.: ternary cubic, ii, 325, iii, 48, iv, 325—30; on lambdian of binary quartics, ii, 550; hyperdeterminants, ii, 588—601; invariants, iv, 419; intersection of line and conic, v, 501—4; bi-tangents of quartic curve, vii, 125; construction of a conic, vii, 593; integration formula, x, 12—4; concomitants of ternary cubic, xi, 342; Abelian function, xii, 157; quadric integral, xii, 162—4, 164—7; cubic transformation, xii, 173—9.

Arrangements: theory of permutations, i, 423—4; triads of seven and fifteen things, i, 481—4, 589, v, 95—7; of numbers, x, 570; latin squares, xiii, 55—7; (see also Combinatory Analysis, Permutations, Substitutions).

Art: Cayley's love and practice of, viii, xxiv; and algebra, xiii, 48.

Associative: the term, xii, 461.

Associative Algebra: xii, 303.

Associative Imaginaries: xii, 105—6.

Asteroids: Newcomb on orbits, ix, 176—7.

Astronomy: Cayley's work, viii, xliii; origin of, xi, 446—7; Gauss's work, xi, 545; transformation of coordinates, xi, 575; Sylvester's work, xiii, 47.

Asymptotes: of algebraic curves, i, 46.

Asymptotic: the term, xiii, 232.

Asyzygetic: covariants and invariants, ii, 250; the term, vi, 460—1, vii, 336.

Atomic Theory: Sylvester's work in, xiii, 47.

Attraction and Multiple Integrals: i, 5—12, 13—8, 193—203, 294—6, 285—9, 382—3, 508—10, 550; and theorem of Boole, i, 384—7, 588; and theorem of Jellett, i, 388—91.

Attraction of Ellipsoids: ii, 432—4, 511—18, vii, 380—3; Gauss's method, iii, 25—8, 149—53; Laplace's, iii, 53—65, 567; Rodrigues', iii, 149—53.

Attractions: theory, ii, 35—9, iii, 154—5, xi, 448; of terminated straight line, vii, 31—3; of ellipsoidal shell on exterior point, ix, 302—11; of lens-shaped body, x, 594.

Augmented Equation: xii, 453.

Ausdehnungslehre: Grassmann, xii, 450—9.

Autopolar Polyhedra: iv, 185.

Auxesis: xi, 79, 81.

Auxiliars: the term, vi, 156; application to quintics, vi, 186—7.

Auxiliary Equations (see Equations).

Axiom: twelfth of Euclid, xi, 435, xiii, 220.

Axis: of inertia, iv, 559—66; cubic surfaces and kinds of, vi, 367; transformation of equation of surface to chief axes, ix, 48—51; radical, xi, 465.

Axonometry: ix, 508—18.

Babbage, C.: homographic function, ii, 494; matrices, xi, 252.

Babinet, J.: representation of hemisphere, viii, 539.
Bacharach, J.: intersection of curves, i, 583, xii, 590.
Ball, Sir E. S.: theory of content, ii, 606; roots of quartic, v, 610, vii, 551; dynamical equations, ix, 198—200; non-Euclidian geometry, xiii, 481.
Barriers: the term, x, 320.
Barycentric Calculus: Möbius, xii, 472—3.
Beltrami, E.: non-Euclidian plane geometry, xii, 221, 224; orthonomorphosis, xiii, 171.
Bernoulli, James: analysis and numbers of, ix, 259—62.
Bertrand, J.: geodesic lines, iii, 38; differential equations, iii, 164, 189, 203; integrals and mechanical problems, iii, 187, 290—3; Mécanique Analytique, iii, 189—90, 203; wave surface, iv, 432—4; central forces problem, iv, 519—21, 584; problem of two centres, iv, 532, 584; motion of point, iv, 547, 584; problem of three bodies, iv, 547—52, 584, v, 23; curves of curvature on surfaces, viii, 98; series, xi, 623, 627.
Bessel, F. W.: elliptic motion, iv, 522, 584; precession and nutation, ix, 194—6.
Bezout, E.: determinants, i, 63; elimination, iv, 38—9, v, 159, 555—6; equation of differences, iv, 151, 259.
Bezoutiant: defined, ii, 526.
Bezoutic Emanant: defined, ii, 525.
Bezoutic Matrix: defined, iv, 607.
Bezoutoid: defined, ii, 526.
Biaxial: defined, xii, 15.
Bibasic: defined, xii, 642.
Bibliography: of covariants and invariants, ii, 598—601; of symmetric functions, ii, 602—3.
Bicentre: the term, ix, 429—60, x, 599.
Bicircular Quartic, on the: x, 223—42; introductory, x, 223—4; formulae for fourfold generation, x, 224—6; determination as to reality, x, 226; investigation of elementary arc formulae, x, 226—31; inscribed quadrilateral, x, 231—5.
Bicircular Quartics: and polygonal curves, vi, 472; foci of, vi, 521—2, 522—3; analytical theory, vi, 528—30; problem and solution, vii, 575, x, 590—8; geometrical construction, ix, 13—5; generation, xiii, 12; transformation of circle, xiii, 183; (see also Quarters).
Bickmore, C. E.: Pellian equation, xiii, 442.
Bicolumn: the term, ix, 28.
Bicorn: the term, vi, 148, 158; equation, vi, 163; form, vi, 164.
Bicursal Sextic: and binodal quartic, ix, 581.
Bien déterminée: defined, xiv, 433.
Bin: the abbreviation for tortuous curves, xiii, 253.
Binary: the term, iv, 604, vi, 466.
Binary Cubics: covariants of, ii, 189—91; fifth memoir on quantics, ii, 540—5; geometrical representation of covariants of, vii, 732—3; tables of forms, viii, 51—64; transformation of function, xi, 411—6.
Binary Forms: canonic root, v, 103—5.
Binary Matrices (see Matrices).
Binary Quadratic Forms: tables of, v, 141—56, 618.
Binary Quadratics: covariants of, ii, 189—91; single, ii, 527—9; theories of harmonic relation and of involution, ii, 529—40; asyzygetic covariants of, vii, 337—8.
Binary Quantics: canonical form, iv, 43—52, 53; canonical root, v, 103—5; involution, v, 296—301; transformations, vi, 187—90; discriminants of, vii, 393; and covariants, viii, 566—7, x, 430—1, xi, 272—8; geometrical interpretation, ix, 16—7; functions, ix, 426; derivatives of three, x, 278—86; literal table for, xi, 357—64; finite number of covariants of, xii, 558.

Binary Quartics: covariants of, ii, 189—91; fifth memoir on quantics, ii, 545—56; theorem of four, vii, 100; generating function of, x, 341.

Binary Quintics: tables of covariants M to W of, ii, 282—309; covariants and syzygies of degree 6, vi, 148—53; and sextic, vi, 190; irreducible covariants, vii, 334; tables, vii, 341—6; asyzygetic covariants of, vii, 389—400; $(\alpha x, y^3, x_3, 339—400$; theorem relating to covariants, x, 430—1; concomitant system for, xi, 272.

Binary Sextic: and quintic, vi, 190; and squared cubic and cubed quadric, xi, 105; concomitant system for, xi, 272; tables for, xi, 372—6, 377—88.

Binet, J.: determinants, i, 63, 64, 581; variation of arbitrary constants, iii, 181; relative motion, iv, 535, 584; inertia, iv, 562—3, 584.

Binodal Quartic: transformed to biurusal sextic, ix, 581; graphical representation of elliptic functions, xiii, 9—19; (see also Quartics).

Binode: the term, vi, 330, 335, 361, 362, 583—5.

Binomial Equation: theory of numbers, xi, 84—96.

Binomial Theorem: factorials and derivations, ii, 101, 102, viii, 463—73.

Binormal: the term, xiii, 253.

Biography: of Cayley, viii, ix—xlviv.

Bipartite: the term, vi, 464.

Biplane: the term, vi, 360.

Biplanes: the term, vi, 360—1, 362.

Bipoint-locus: the term, vi, 198.

Biquaternions: Clifford, xi, 438, xiii, 481.

Bisection: theory of numbers, xi, 84—96.

Bitangents: of a plane curve, iv, 186—206; of quartic curve, iv, 342—8, vii, 123—4, x, 244, xi, 221—3, xii, 74—94; of quartic, and triple theta functions, x, 444, 446; of curves, xi, 473—4, 480; of quintic, xiii, 21.

Bitetrad: the term, xiii, 551.

Bitrope: the term, vi, 330, 335, 583—5, 591, xi, 228.

Björling, E. G.: root limitation, ix, 39; difference table, xi, 144.

Blissard, J.: factorials, v, 574.

Bodies, Problem of Three: iii, 153; Hamilton's method, iii, 97—103; Jacobi's theorem, iii, 519—21, v, 23.

Body (see Solid Body).

Bolyai, J.: hyperbolic geometry, viii, xxxvii.

Bondset: the term, xiii, 642.

Bonnet, Ossian: problem of two centres, iv, 528, 585; imaginary coordinates, viii, 569; minimal surfaces, xii, 595; curves of curvature, xii, 601, 629—31; skew surfaces, xiii, 231, 237.

Book-keeping: pamphlet by Cayley, viii, xxiv.

Boole, G.: linear transformations, i, 80, 92, 93—4, 428, 584; multiple integrals, i, 198, 384—7, 588; attractions, i, 295, 299; theorem of Jellett, i, 388; transformation of elliptic integral, i, 508—10; discriminants, i, 584; theory of permutants, ii, 26; theory of attractions, ii, 35; probabilities, ii, 103, 594—8, v, 80—4, 55; hyperdeterminants, ii, 598—601; transformation, iii, 129; formulae for differentiation, iv, 135; differential equations, iv, 515, v, 301; involution, v, 301; invariants, viii, xxx; calculus of logic, viii, 65—6; integration of differential equations by series, viii, 458;
BOOTH—CAMBRIDGE.

prepotentials, ix, 417—23; difference table, xi, 144; matrices, xi, 256; mathematics and logic, xi, 458—9; series, xi, 627.

Booth, J.: rotation of solid body, iv, 577, 585.

Borchart, C. W.: symmetric functions, ii, 417, 421—3; 16-nodal quartic surface, x, 180; theta functions, x, 464, 499; theorem on trees, xiii, 28.

Bordered Skew Determinants: ii, 203.

Boron: trees of, ix, 429—60.

Bonnet, J. C.: orthogonal surfaces, viii, 279, 292; periods of elliptic integrals, ix, 618; conformal representation, xi, 80; imaginary variables, xi, 440; elliptic functions, xi, 534; differential equations of first order, xii, 432—41; functions of complex variables, xiii, 190.

Branch: the term, iii, 243, x, 36, xi, 476—7; partial, of a curve, v, 425; of polygonal curves, vi, 474—6, 481—5; main, of trees, ix, 429—60; theorem on trees, xiii, 26—8.

Branch-points: the term, x, 317.

Bravais, A.: spherical pendulum, iv, 533, 558; on polyhedra, v, 557, 559.

Breitschneider, C. A.: mathematical tables, ix, 486.

Brianchon, C. J.: theorem of, i, 328, v, 4; rectangular hyperbola, iii, 254; reciprocal polars, xi, 465.

Brill, A.: transformation of plane curves, vi, 593; transformation, and theory of invariants, viii, 387; sextic curve, ix, 504—7.

Brinkley, J.: formulae of, iv, 262.

Brioni, P.: Sulla variazione and Teorema di Mechanica, iii, 190, 203; degli integrali di un problema di dinamica, iii, 199—200, 203; peninvariants, iv, 246; text-book on determinants, iv, 608; Schwarzian derivative and polyhedral functions, xi, 149, 151; concomitants of ternary cubic, xi, 342; Jacobian sextic equation, x, 401; theory of equations, xi, 520; elliptic functions and quintic, xii, 493; transformation of elliptic functions, xii, 503—34, 554—5; wave surfaces, xiii, 238; sextic resolvent equations, xiii, 473, 478, 479.

Briot, A.: rotation of solid body, iv, 574, 585; periods of elliptic integral, ix, 618; conformal representation, xi, 80; imaginary variables, xi, 440; elliptic functions, xi, 534; differential equations of first order, xii, 432—41; functions of complex variables, xiii, 190.

British Association: report on Catalogue of Philosophic Memoirs, v, 546—8, 620; communications to, v, 549—53; Cayley president 1883, viii, xxi—xxii; communications on in-and-circumscribed triangle, viii, 566—6; correspondence of points and lines in space, viii, 566; covariants of binary quintic, vii, 506—7; families of surfaces, viii, 567; Mercator's projection of surface of revolution, viii, 567; report on mathematical tables, ix, 461—99; Presidential address, xi, 429—59.

Buchheim, A.: parallels of, xiii, 481, 489.

Buée, A. Q.: multiple algebra, xii, 467, 471.

Burg, A.: algebraical theorem, x, 57.

Cagnoli, A.: spherical trigonometry, iv, 80.

Calculus: of logic, viii, 65—6; and time, xi, 443—4; of functions, xi, 541—2; of forms; (see also Covariants, Invariants, Quantics).

Calculus of Variations: Jacobi on, iii, 174; problem in, vii, 263.

Cambridge Mathematical Journal: foundation, viii, xii.
Campaniform: the term, vi, 101, xi, 479.
Canonical Elements: for disturbed motion, iii, 77.
Canonical Forms: of quantics, ii, 533, 542, 543; of binary quantics, iv, 43—52, 53; the term, iv, 606—7, xiii, 46; quintics, vi, 153—4, x, 353—62, xii, 27; cubic surfaces, vi, 361; Sylvester's work, xiii, 46; (see also Formule).
Canonisant: defined, ii, 523, iv, 45, 53, 606, 607, v, 103—5.
Capacity: of a curve, i, 583; the term, vii, 140; and postulandum, xiii, 115.
Capitation: and seminvariants, xii, 248—56.
Carbon: trees of, ix, 427—60, 544—5.
Cardan, J.: solution of cubic, v, 54, xii, 239.
Cards: game of mouse-trap, iii, 8, 8, 256—8; (see also Permutations).
Carey, F. S.: theory of numbers, xii, 73.
Carnot, L.: distances of points, i, 64, 581; on two tetrahedra in perspective, ix, 209—10; geometrical paradox, xii, 305—6.
Cartesians: cusp, i, 539; oval of Descartes, ii, 338, 365—6, 370; equation of, ii, 370—4, 376; defined, vi, 524, xi, 481; with two imaginary axial foci, vii, 241—3; and cubic curve, vii, 556; problem and solution, vii, 582; note on, ix, 45—7; construction, ix, 317, 533—6, x, 261; invention of coordinates, xi, 449; explained, xi, 461; scalene transformation, ix, 532—4; correspondence of confocal, with right lines of hyperboloid, xii, 587—9.
Casey, J.: equation of, and tangent circles, vi, 65—71; polyzomal curves, vi, 471—2; bicircular quartics, vi, 540, x, 223—42, xiii, 12; tautions, vi, 545, vii, 113, xiii, 153; circle touching three others, vi, 568—73; cyclides and sphero-quartics, viii, 262—3; cyclide, ix, 64, 75.
Cassinian: note on, ix, 264—5; the word, x, 608; equation of, x, 608.
Catalan, E.: attractions, i, 288; integral calculus, i, 313; series, iii, 127, xi, 627; curve parallel to ellipse, iv, 152; minimal surfaces, xii, 594—5.
Catalecticant: the term, ii, 523, iv, 606, 607.
Catenary: and epitrochoid, xiii, 57.
Cauchy, A. L.: determinants, i, 63, 64, 66; inverse elliptic functions, i, 148, 157, 174; integral calculus, i, 309, 314; permutations, i, 423; partitions, ii, 248, v, 48, vii, 577; differential equations, iii, 166, 169; theory of logarithms, iii, 208—13, 225; polyhedra, iv, 86—7; singularity of function, iv, 105; curve parallel to ellipse, iv, 132; equations of motion, iv, 514, 555; elliptic motion, iv, 524, 585; inertia, iv, 560, 564, 565, 583; geodesic lines on ellipsoid, vii, 489; geometrical representation of root-limitation, ix, 21—39; series, ix, 61, xi, 627; mathematical tables, ix, 475; theory of equations, x, 6, xi, 504; correspondence, x, 290; monogenous function, xi, 537; theory of numbers, xi, 661; roots of algebraic equations, xiii, 35.
Cavalieri, B.: quadrature of curves, xi, 641.
Cayley, Arthur: portraits of, frontispiece to vols. vi, vii, xi; manuscript of, frontispiece to vol. viii; biography of, viii, ix—xlv; mathematical tables, ix, 479, 487, 491.
Cayleyan: the word, i, 586, ii, 381.
Central Forces Problem: iv, 517—21.
Centres: problem of two, iii, 104—10, iv, 527, 558—9; cubic, and cones, iv, 173—8, 179—81; of curves defined, vi, 522; four points and conic of, vi, 582; of trees, ix, 429—60; the term, x, 599; of three circles, xi, 552.
Centro-curve: kinds of, viii, 320.
Centro-surface: of ellipsoid, viii, 8; the term, viii, 316; Radio's inverse, xii, 457—8.
C. XIV.
CESSER—CLAIRAUT.

Cesser: points of, iv, 130.
Chance (see Probability).
Characteristic Function: of Hamilton, iii, 217; for systems of rays, xii, 571.
Characteristics: logic of, iii, 51—2; of Chasles, v, 552; theory, vi, 594, xiii, 468—72; of triple theta functions, x, 441—5.
Chartography: surface representation on plane, viii, 538—9; colouring of maps, xi, 7—8; map projections, xi, 448.
Chasles, M.: intersections of curves, i, 25—7; Pascal's theorem, i, 45; theorem on correspondence, i, 212; a theorem of, demonstrated, i, 355; analogue of Pascal's theorem, i, 427; transformation of curves, i, 478—80; homography, ii, 538; cubic curves, iv, 122, 495; inertia, iv, 561, 586; kinematics of solid body, iv, 559, 586; curves on a quadric, v, 11; on a cubic, v, 19; conics touching curves, v, 31—2, 552; scrolls, v, 169, 201, vi, 328; quartic scrolls, v, 201; cubic curves and cones, v, 401; equilibrium of four forces, v, 540—1; correspondence of points in plane curve, v, 542; contact of conics, v, 552; characteristics, v, 552; on united points, vi, 9; curves which satisfy given conditions, vii, 191, 192, 200—26; principle of correspondence, vi, 264, xi, 482, 485—8; foci of conics, vii, 1; six coordinates of a line, vii, 93; attraction of ellipsoids, vii, 380—3; locus in plano, vii, 605; cones satisfying six conditions, viii, 99; penultimate forms of curves, viii, 258; theory of duality, xi, 467.
Chemistry: Cayley's interest in, viii, x; application of trees to, ix, 202—4, 427—69, 544—5.
Chessboard: topology of, x, 609—10.
Chord: angle between normal and bisector, x, 576; of two circles, xi, 552—6.
Christie, J. T.: Cayley's law work, viii, xiii, iv.
Christoffel, E. B.: orthomorphosis, xiii, 150.
Chuck: for quartic curves, viii, 151—5; for curve-tracing, viii, 179—80; bicycle, viii, 209—11.
Circle: Salmon's equation for orthotomic, iii, 48—50; and points, v, 560; and ellipse, v, 561; line and parabola, v, 607; envelope of, v, 610; equation of, vi, 501, xi, 558—61; potential of, ix, 290—301; quadrilateral inscribable in, x, 578; orthomorphosis, xii, 328—36, xiii, 20, 182, 202—5; Wallis's π investigation, xiii, 22—5; transformation into bicircular quartic, xiii, 185; and circumference, the terms, xiii, 194; the nine point, xiii, 517—9, 520—1, 548—51; of curvature of an ellipse, xiii, 537.
Circles: powers of, i, 581; systems of, iii, 111—4, x, 566; in-and-circumscribed polygon, iv, 363—8; a pair touching three given, vi, 65—71; involution of four, vi, 505—8; relation between two, vii, 13—3; equal, vii, 31; minimum enclosing three points, x, 576; system of 15 connected with icosahedron, xi, 208—12; radical axis, xi, 463; radical centre of three, xi, 552; Mascheroni's geometry of the compass, xii, 314—7; system of three which cut each other at given angles, xii, 559—61, 564—70; the two relations connecting the distances of four points on a circle, xii, 576—7; roots of algebraic equation, xiii, 37; problem of tactions, xiii, 150—69; tetrads of, xiii, 425—9; (see also Casey, Orthomorphosis).
Circuit: the word, x, 480.
Circular: the word, x, 481.
Circular Cubic: and polyzomal curves, vi, 522—8.
Circular Points: at infinity, viii, 32.
Circular Relation of Möbius: iii, 118—9, ix, 612—7.
Circumference: and circle, the terms, xiii, 194.
Cissoid: the term, x, 461.
Clairaut, A. C.: lunar theory, iv, 518, 586; demonstration of his theorem, x, 17—8; curves of double curvature, xi, 489.

Classification: of curves, v, 613—7; cubics and quartics, vi, 525; quartic surfaces, vii, 244; nodal quartic surfaces, vii, 264—7; mathematical tables, ix, 424—5; cubic curves, xi, 478—80; quartic curves, xi, 480.

Clausen, T.: Castillon's problem, iv, 435—41.

Clebsch, R. F. A.: Steiner's extension of Malfatti's problem, ii, 593; Pfaffian equations, iv, 515; singularities of curves, v, 476—7; developable surfaces, v, 518; Abelian integrals, v, 521; transformation of plane curves, vi, 1—8, 593; Casey's equation, vi, 67; binary quintic and sextic, vi, 190; principle of correspondence, vi, 264; reciprocal surfaces, vi, 356; cubic curve in pencil of six lines, vi, 593—4; centro-surface of ellipsoid, vii, 130, viii, 316; quartic and quintic surfaces, vii, 245—51, 313; bicursal curves, viii, 182; transformation of unicursal surfaces, viii, 389; deficiency of surfaces, viii, 394; covariants, viii, 404; expression for elliptic integral of second kind, x, 27; concomitants of ternary cubic, xi, 343; tables for binary sextic, xi, 372; Abelian functions, xi, 102, 109; symbolic notation for quantics, xii, 347; seminvariants, xiii, 362; Pfaffianvariants, xiii, 465—14.

Clifford, W. K.: powers of circles and spheres, i, 581; circle and ellipse, v, 561; conic, v, 562; triangles and polygons, v, 589; rational transformation between two spaces, vii, 222—4; quartic surfaces, vii, 246; compound combinations, x, 443; biquaternions, xi, 458; syzygetic relations among the powers of linear quantics, xiii, 224—7; non-Euclidean geometry, xiii, 481.

Close: partitions of a, v, 62—5, 617; defined, v, 63.

Close-planes: the term, vi, 330, 583—5.

Cobeztoutiants: defined, ii, 524.

Cobeztoidoids: defined, ii, 524—5.

Codazzi, D.: application of surfaces, xiii, 253—64.

Coefficients: of Legendre, i, 375—6; development of $(1+x^2)^{n/m}$, xii, 354—7.

Cogredient: the term, iv, 607—8, xiii, 46.

Cohen, A.: relative motion, iv, 537, 586; rotation of solid body, iv, 573, 586.

Cole, F. W.: on simple groups, xii, 583.

Colin: the term, v, 521.

Colour Groups: diagrams representing, x, 328—330, 403—5; the term, xii, 639—41.

Colours: in maps, xi, 7—8.

Colours set: the term, xii, 641.

Columns: the term, xii, 333.

Comberousse, C.: polyhedra, iv, 609.

Combesurc, E.: wave surfaces, xiii, 238.

Combinants: of quantics, ii, 322; the term, ii, 518, iv, 607—8, xiii, 46; and ternary quadratics, iv, 352.

Combinatory Analysis: magic squares, x, 38; compound combinations, x, 243—4; a problem of arrangements, x, 245—8; note on Mr Muir's solution, x, 249—51; the game of mousetrap, x, 256—8; Sylvester's work in, xiii, 47; (see also partitions).

Commutants: the term, i, 584, ii, 19, 26, iv, 594, 599—609, xiii, 46; property of, v, 495—7.

Commutative: the term, xii, 461; (see also Groups).
COMOMENT—CONICS.

Compass: Mascheroni's geometry of the, xii, 314—7.

Complex (see Surfaces).

Complex Cone: (cubic) defined, v, 402, 404, 551.

Complexes of Lines: iv, 618; through twisted quartic, xii, 428—31.

Complex Multiplication: in elliptic functions, xii, 556—7; (see also Multiplication).

Complex Quantities: logarithms of, vi, 14—8.

Complex Variables: and conformal representation, x, 316—23; Newton-Fourier theorem for, x, 405—6; (see also Function, Newton-Fourier theorem).

Composition: of quadratic forms, i, 532; of singularities, v, 619; of rotations, vi, 24—6.

Compound Combinations (see Combinatory analysis).

Compound Singularities: v, 525.

Conchoid: the term, xi, 460.

Concomitant: the term, iv, 607—8, xiii, 46.

Concomitant-system: of quintic, x, 342.

Cone: touching six lines, vii, 401—3; formulae for potentials of, ix, 266—7.

Cones: through cubic curve in space, iii, 219—21; note on cubic, iv, 120—2; and cubic centres, iv, 173—8, 179—81; and cubic curves, v, 284—8; kinds of cubic, v, 401—15; and representation of curve, v, 552; circumscribed sextic, viii, 139; satisfying six conditions, viii, 99—137; the term asymptotic, xiii, 232; characteristic n and theory of curves in space, xiii, 468—72.

Configurations: algebraic, by Hilbert, vi, 596.

Conformal Representation: ix, 609—11, xi, 442, xii, 104; by function arcsin (x + iy), x, 290—2; mechanical constructions, x, 406; example, xi, 38; theorem, xi, 78—81; and Schwarzian theory, xi, 169—76; imaginary quantities, xi, 258—60; (see also Orthomorphism, Representation, Transformation).

Congregate: the word, x, 339, 345.

Conic: theorem of triangle and line, v, 190—2; theorem of eight points on a, v, 427—30; formula for intersections of line and conic, v, 500—4; four points on, v, 571; defined by five conditions, vii, 546, 552; through three points and with double contact, vii, 554; loci of, vii, 571; and four points, vii, 581, 587; construction, vii, 592; (2, 2) correspondence of points on, viii, 14—21; and cubic, x, 605—7; Monge's differential equation, xii, 393; foci of quadric surface, xiii, 54.

Conic-node: the term, vi, 360.

Conics, Analytical Theory of: iv, 395—419; relating to single conic, iv, 396—402; ditto with point or line, iv, 402—12; ditto with tangent of conic of double contact, iv, 413; relating to two conics, iv, 416—9.

Conics: general theory of, i, 519—21; inscribed in a quadric surface, i, 557—63; in-and-circumscribed polygon, ii, 142—4, iv, 295—9; two dimensional geometry, ii, 575—83, 586—92; forms of equations of, iii, 86—96; area of, and trilinear equation second degree, iii, 143—8; normals of, iv, 74—7; of five-pointic contact of plane curve, iv, 297—39; which touch four lines, iv, 429—31; system having double contact, iv, 456—9, vii, 568; theorem in, iv, 481—3; touching curves, v, 31—2, 552; four inscribed in same conic and passing through same three points, v, 131—2; contact of, v, 552; and rectangular hyperbolas, v, 554; problem, v, 562, 582; tangents of, v, 578; intersection of, v, 582; triangle and, v, 593; and cubic, x, 608; drawing of, vi, 19; locus from two, vi, 27—34; theorem of four which touch same two lines and pass through same four points, vi, 55—9; which touch cuspidal cubic, vi, 249—33; contact of third order with given cuspidal cubic and double contact with given cubic, vi, 253—6; Zeuthen's forms for characteristics of conics which satisfy four conditions, vi, 256—8; correspondence, and those which satisfy given conditions, are at least arbitrary, vi, 268—71; five conditions of contact with a given curve, vi, 272—91; foci of, vi, 517—9, vii, 1—4; determined by
five conditions of contact, vii, 40; three, problem and solution, vii, 595; and absolute, viii, 31—44; theorem of eight points on, viii, 92—4; cuspidal, of centro-surface, viii, 532—7; reciprocal of equation, viii, 522—3; theory of confocal, viii, 556—7; sets of four points on, x, 569; and lines, x, 602; degenerate forms of curves, xi, 218—20; the term, xi, 460; in Ency. Brit., xi, 561—4; analytical geometrical note on, xii, 424; f and c, xiii, 11—2; non-existence of special group of points, xiii, 212; the nine-point circle, xiii, 517—9.

Conics, Spherical: theorem relating to, iv, 428; and stereographic projection, v, 106—9; (see also Polynomial curves).

Conics which pass through: four points, iii, 136—8; four foci of given conic, iv, 505—9; three given points and touch one line, v, 258—64; two given points and touch two given lines, vi, 43—50; two given points and touch given conic, vi, 245—9.

Conic Torus: the, ix, 519—21.

Conjugate Integrals: Hamiltonian, x, 113—5.

Connected Areas: xi, 7.

Connective: of discriminant, ii, 529.

Connective Covariant of two Quantics: defined, ii, 515.

Conormal Correspondence: of vicinal surfaces, viii, 301—8.

Constants: number of, in special equations, xi, 14—6.

Constructive Geometry: vii, 27.

Contacts: problem of, i, 522—31; the term, vii, 546.

Content: Ball on theory of, ii, 606.

Continuous Function: the term, xi, 539.

Contour: lines, iv, 108—11, 699; defined, v, 63.

Contracovariants: defined, iv, 329.

Contractible Squarewise: the term, xiii, 179.

Contragredient: the term, iv, 607—8, xiii, 46.

Contraproductant: defined, ii, 514.

Contraprovector: the term, ii, 514.

Constracst: the term, xiii, 485.

Contravariant: the term, i, 329, xiii, 46; of ternary cubic, iv, 325.

Convergence: condition of uniform, xiii, 342—5.

Converging Series: product of, ix, 61.

Convertible Matrices (see Matrices).

Convolution: the term, vi, 461—2.

Coordinates: in general theory of geometry, ii, 604—6; as functions of parameters, vi, 1—2; polynormal curves, vi, 498—9, 537; trilinear, x, 467; Plücker, xi, 467; degenerate curves, xi, 488—9; in Ency. Brit., xi, 546—51, 566—7; illustrative of geometry, xi, 552—6; curvilinear, in Ency. Brit., xi, 637; versus quaternions, xiii, 541—4.

Coordinates of a Line: x, 603, xi, 468.

Coordinates of Points: expressions for, v, 517—8; lines and planes, non-Euclidian geometry, xiii, 489—91.

Coordinates, Six of a Line: vii, 66—98, viii, 401, x, 287, xii, 42—3, 321; introductory, vii, 66; definition and general notions, vii, 67—9; elementary theorems, vii, 69—73; geometrical considerations, vii, 73—5; linear relations between six coordinates, viii, 75—85; geometrical property of an involution of six lines, vii, 85; four given lines and twofold tractor, vii, 85—6; hyperboloid through three given lines, vii, 86—8; six coordinates defined as absolute magnitudes, vii, 88—9, 96—7; statical and kinematical applications, vii, 89—93; transformation of coordinates, vii, 95—6; formulae of transformation, v, 97—8.

Coordinates, Spherical: theory of, and systems of equations, i, 213—23.
COORDINATES—CRUNODE.

Côpaffan: the term, x11, 406.

Coriolis, G.: motion of three bodies, iv, 541.

Corpus: Sylvester's theory of the, x11, 47.

Correspondence: on cubic curves, i, 184, 190; homographic figures, i, 212; theory, vi, 263—91, x, 259—60, x1, 482; in-and-circumscribed triangle, viii, 222—3; vicinal surfaces, viii, 301—8; of two variables, ix, 94—5, x11, 104; geometrical representation of imaginary variables, x, 316—23; construction of a, x, 38; quadric transformation between points and planes, x11, 100—1; of Cartesians, and generators of hyperboloid, x11, 557—9.

Correspondence of Points: v, 542—5, vi, 22, vii, 168—70, xi, 440; two on a curve, vi, 9—13; on a conic, viii, 14—21; on surfaces, viii, 200—8; and lines, viii, 566.

Cos-centre: the word, x11, 551.

Cotes, R.: central forces, iv, 517, 586.

Counter-barriers: the term, x, 320.

Order: the term, x11, 268.

Couples: algebraic, i, 125—31.

Cournot, A. A.: motion of a body, iv, 583, 586.

Covariant Forms and Tables: xi, 277—80; M to W of binary quintic, ii, 282—309; aszyzygetic, to degree 18, vi, 149—52; 34 concomitants of ternary cubic, x1, 342—56; of binary sextic, xi, 372—6, 377—88; theory of tamisage, x1, 409—10.

Covariants: the term, i, 577, 589, ii, 224, iv, 594, 605, x, 340, x11, 46; determined by differential equations, ii, 164—78; theory, ii, 164—78; of binary cubic, ii, 189, 260—2; binary quadratic, ii, 189; binary quartic, ii, 190, 262—4; aszyzygetic, ii, 250; binary quartic, ii, 269; of cubic, analogous to invariants of quartic, ii, 553; bibliography, ii, 598—601; of degree 6, vi, 148—53; of binary cubic, geometrical interpretation, vii, 332—3; the terms aszyzygetic and irreducible, vii, 336; theory of number of irreducible, vii, 336—7; also new formulae for aszyzygetic, vii, 337—40; also 23 fundamental, vii, 341—8; Gordon's proof for the number, vii, 348—53; theory founded by Cayley, viii, xxix—xxx; his work, viii, xxx—xxxii; as transvectants, viii, 404—8; connected with an algebraical operation, ix, 537—42; derivatives of three binary quartics, x, 278—86; theorem, x, 430—1; a formula, xi, 122—4; formula and Schwarzian derivative, xi, 184—5; in geometry, xi, 474; Sylvester on, x11, 47; a hyperdeterminant identity, x11, 210—11; theory of derivation connected with particular operators, x11, 329—32; (see also Invariants, Linear Transformation, Seminvariants).

Cox, H., Jun.: non-Euclidian geometry, x11, 481.

Cramer, G.: determinants, i, 63; curve classification, v, 334; transformation of plane curves, vi, 1.

Creed, G.: tangential of cubic, ii, 558; calculations by, iii, 361, 522, 586.

Cremo, L.: on Steiner's quartic surface, v, 423; general theory of correspondence, vi, 22—3; Casey's equation, vi, 40—7; scrolls, vi, 327—8, vii, 245—51; polynomial curves, vi, 575—6; rational transformation, vii, 189, 206, 207, 222, 253—5, xi, 482, 484; theory of curve and torse, viii, 72, 76—9, 87—91; geometric transformation, x, 611—2.

Critic Centres (see Involution of Cubic Curves).

Criticoids: and invariants, x11, 390; and reciprocants, x11, 366—7; of Cockle, x11, 366—7.

Critic Points and Lines: the term, x, 311—5.

Crofton, M. W.: polynomal curves, vi, 507; Cartesian curves, vii, 582.

Cross-points: the term, x, 317.

Crural: the term, v, 402, 551, xi, 228.

Crude: defined, iv, 181, v, 295, 521, xi, 630.
CRYSTALS—CUBIC.

Crystals: biaxial and ray planes, ix, 107—9.

Cubic: canonical form of binary, ii, 542; equation of differences for, iv, 242, 279; ternary, iv, 325—41; and tables, iv, 333—41; the term, iv, 604; resultant of two binary, v, 289—91; asyzygetic covariants of binary, vii, 338—9; automorphic transformation of binary cubic, xi, 411—6; (see also Binary and Ternary Cubics).

Cubic Centres: of lines, v, 73—6.

Cubic Cone: kinds of, v, 401—5, 551, 553; anharmonic property, v, 411—2.

Cubic Curve Classification: v, 354—408, viii, xxxviii; seven head divisions, v, 355—6; their equations, v, 356—9; thirteen divisions, v, 360—1; notion of group, v, 361; osculating asymptotes, v, 361—3; Newton's classification, v, 364—6; xi, 464; Plücker's, v, 366—8; theory of groups, v, 368—9; groups of hyperbolas Δ, v, 369—70; hyperbolas Δ redundant, v, 370—6; ditto defective, v, 376—88; hyperbolas ⊙, v, 388—9; ditto redundant, v, 390—9; ditto defective, v, 390—1; groups of parabolic hyperbolas, v, 391—4; of central and parabolic hyperbolisms, v, 394; groups of divergent parabolas, v, 395; trident curve and cubical parabola, v, 395; division into species, Newton and Plücker, v, 396—9.

Cubic Curve Memoirs: first, i, 183—9, 586; remarks, i, 190—4, 586; second memoir, ii, 381—416, iv, 188; definitions, ii, 382—3; theorems relating to conjugate poles, ii, 383—5; their proof, ii, 385—86; geometrical definition of Quippian, ii, 396—7; theorems, ii, 397—403; formulae for intersection of curve and line, ii, 404—5; formulae for satellite point and line, ii, 405—9; theorems relating to satellite point, ii, 409—12; first polar point of cubic, ii, 412—5; recapitulation of geometrical definitions of Pippian, ii, 416.

Cubic Curves: tangential of, ii, 558—60; conics through, iii, 219—21; note on, iv, 120—2; five pointic contact, iv, 231—6; ninth point of intersection of those passing through eight given points, iv, 495—504; twisted, v, 1; sextactic points of plane, v, 233—5; and cones, v, 401—15, 551, 553; inflexions of, v, 493—4, xi, 473; in connexion with quintics and quartics, v, 589; problem, v, 586; derivation of points, vi, 20; intersection of, vi, 20; in pencil of six lines, vi, 105—15, 503—4; nodal, vi, 171—4; foci of circular, vi, 521—2; theory of circular, vi, 526—8; symmetrical circular, vi, 549—50, 550—3; quartic and three, vii, 546; points on, vii, 549; and Cartesian curves, vii, 556; rectangular, vii, 591; mechanical description, viii, 147—50; residuation in regard to one, ix, 211—4; problem and solution, x, 592—4; equation of, x, 603; and conic, x, 605—7; Abel's theorem applied to, xi, 27—8; degenerate, xi, 220; date of theory, xi, 449; forms and classification, xi, 475—80; circular, xi, 481; systems of, xi, 457; Abel's theorem, xii, 30; elliptic functions, xii, 35—7; as ground-curve in Abel's theory, xii, 38, 100—116; twisted, on quadric surface, xii, 307—10; notion of, xiii, 75—80; and non-existence of a special group of points, xiii, 212.

Cubic Equations: solution of, ii, 542; Tschirnhausen's transformation, iv, 364—7, 377; equation of squared differences, iv, 463—5; Sturmian constants, iv, 473—7; relation between roots, vii, 548; solution by radicals, x, 9; constants of, xi, 556; note on, xii, 421—3; Cardan's solution, xii, 299; on two, xiii, 348—9.

Cubic Forms: letters on, iii, 9—12.

Cubic Identity: problem, v, 397.

Cubic Scrolls (see Scrolls).

Cubic Surfaces Memoir: vi, 339—455, 555—6; Introductory, vi, 339; twenty-three cases, explanations, and tables of singularities, vi, 359—63; determination of number of certain singularities, vi, 364—5; lines and planes of cubic surface, faculative lines, diagrams, vi, 365—6; different kinds of axis, vi, 367; determination of reciprocal equation, vi, 368—70; explanation of sections of memoir, vi, 370—1; equations, 1=12, vi, 371—83; 12—C2, vi, 383—90; 12—B2, vi, 391—6; 12—2C2, vi, 397—492; 12—B1, vi, 403—7; 12—B3—C2, vi, 407—11; 12—B2, vi, 411—8; 12—3C2, vi, 418—
CUBIC—CURVES.

88

451—5; 12—3B, vi, 449—50; synopsis of foregoing, vi, 450; cubic scrolls, vi, 451.

Cubic Surfaces: triple tangent planes, i, 445—56, 589; skew, v, 90—4; delineation of scrolls, v, 110—2;
nodal curve of developable from quartic equation, v, 135—7; theory, v, 138—40; five given
lines on, vii, 177—8; double sixers, vii, 316—29; and tetrahedra, vii, 607; Wiener's model with

Cubic Transformation of Elliptic Functions: i, 266—7, vii, 44—6, x, 46, 58, xii, 518—22, 555,
556—7; geometric illustration, ix, 522—6.

Cub-Cubic Curves: in space, v, 18—9.

Cubinvariants: of binary quartic, i, 94; of quartic, ii, 510; the term, iv, 606; of quadri-quadratic
function, xiii, 67—8.

Cuboid: potential of, ix, 272, 274—5, 278—50.

Cumulant: the word, iv, 600—1.

Cunningham, A.: on number of terms in a determinant, x, 579—80.

Curtate: the term, xi, 155.

Curvature: lines of, on ellipsoid, i, 36—9; of plane curve at double point, iv, 466—9; of surfaces,
iv, 466—9; geodesic, xi, 323—30; (see also Curves of Curvature, Orthogonal Surfaces).

Curves: and developables, i, 207—11, 485, 586—7, 589; and two dimensional geometry, ii, 569—83;
partial branch of, v, 425; reciprocation, v, 505—10; representation by cone and monoid surface,
v, 552; nodal, spinode and cuspidal, of cubic surfaces, vi, 450, 593; and space of n dimensions,
v, 456—7; correspondence of two points on, vii, 39; graduation, vii, 426; mechanical description,
of, viii, 138—44, 147—50, 151—5, x, 576; bicyclic chuck for, viii, 209—11; penultimate forms,
viii, 258—61, 262—3; property of curve and torse, viii, 520—1; coordinates and equations, x,
546; degenerate forms, xi, 218—20, 487—9; abstract geometry, xi, 441—2; in Ency. Brit., xi,
460—89, 572—3, 579—80; and theory of equations, xi, 501; and function, xi, 540—1; and solid
geometry, xi, 569; quadrature of, xi, 641—2; minimal surfaces, xiii, 41; orthotomic, of a system
of lines in a plane, xiii, 346—7; (see also Correspondence, Cubic Curves, Nodal Curves, Polynomial
Curves).

Curves, Algebraic: i, 46—54, 584.

Curves, Classification of: v, 613—7; (see also Cubic Curve Classification).

Curves, Excentro-quartic: v, 282.

Curves in Space: analytical representation, iv, 446—55, 490—5, 616—8, vii, 66, xi, 9—13; defined by
conoid and monoid surfaces, v, 7—20, 532, 553, 613; quartic, v, 11—5; quintic, v, 15—6, 24—30, 552,
553, 613; quadri-cubic, v, 16; quadri-quartic, v, 17; cubi-cubic, v, 18—9; Halphen's characteristic
n in theory of, xiii, 468—72.

Curves, Intersections of: i, 25—7, 583, xii, 500—4; real, ix, 21.

Curves of Curvature: near umbilics, vii, 330—1; on surfaces, viii, 37—8, 145—6, 264—8; Ency.
Brit., xi, 628, 635—6; wave surface, xii, 249; surfaces with spherical, xii, 601—38.

Curves of Striction: i, 234.

Curves, Opposite: v, 468.

Curves, Parallel: envelopes and surfaces, iv, 123—33, 152—7, 158—65; and evolutes, viii, 31—3;
theory of, x, 269; the critic, in solar eclipses, x, 311—5.

Curves, Pedal: v, 113—4.

Curves, Penultimate Quartic: viii, 526—8.

Curves, Plane: double tangents of, iv, 186—206; conic of five-pointic contact of, iv, 207—39;
Curves—Cycloid.

Curves, Plane, sextactic points of: v, 221—57, 618—9; condition for point, v, 222—5; notations and remarks, v, 225—6; first transformation, v, 226; second, v, 227—8; third, v, 228—9; fourth and final form, v, 229—33; application to cubic, v, 233—5; proof of identities, v, 235—7; Jacobian formula, v, 237—8; proofs of equations and identities, v, 239—47; appendix, v, 247.

Curves, Poloid: iv, 571.

Curves, Rhizic: ix, 34.

Curves, Serpoloid: iv, 571.

Curves, Symmetric: i, 473.

Curves, Theory of, and Torse: viii, 72—91; explanations and notation, viii, 72—4; Plücker-Cayley equations, viii, 74, 75—6, 80—1; Salmon-Cremona equations, viii, 74, 76—9, 87—91; geometrical theory of foregoing relations, viii, 79—80; tables, viii, 81—4; nodal curve x, viii, 84—7.

Curves, Three-bar: ix, 551—80, 585.

Curves, Transformations of: i, 471—5, 476—80; scalene, ix, 527—34.

Curves, Triangular: vii, 39.

Curves, Twisted Quartic: xii, 428—31.

Curves which satisfy given conditions: vi, 191—262, 504, vii, 40; Introductory, vi, 191; previous memoirs, vi, 191—2; quad-geometrical representation of conditions, vi, 193—200; Chasles' and Zeuthen's researches, vi, 200—26; extensions of de Jonquières, vi, 226—42; form of equation of curves of a series of given index, vi, 241—2; line-pairs which pass through three given points and touch a given conic, vi, 244; conics which pass through two given points and touch given conic, vi, 245—9; conics which touch cuspidal cubic, vi, 249—53; conics which have contact of third order with given cuspidal cubic and double contact with given cubic, vi, 253—6; Zeuthen's forms for characteristics of conics which satisfy four conditions, vi, 256—8; question from de Jonquières' formula, vi, 258—62; the principle of correspondence, vi, 263—91; (Introductory, vi, 263—4; correspondence of two points on a curve, vi, 264—8; application to conics which satisfy given conditions, one at least arbitrary, vi, 268—71; five conditions of contact with a given curve, vi, 272—91).

Curve Tracing: Cayley's liking for, vii, xxxix; mechanism, vii, 179—80, xii, 515—6; importance, xi, 461; order of, xi, 461.

Curvilinear Coordinates: xi, 330, xii, 1—18; surfaces divisible into squares, viii, 146; geodesic lines, vii, 156—7; curves of curvature, viii, 264—8; orthogonal surfaces, viii, 269—91.

Cusp: of Cartesian at circular points at infinity, i, 589; synonyms with spinode, ii, 28, iv, 22, 27; of second kind or node-cusp, v, 265—6, 618; order of plexus for, v, 309—12; the term, xi, 468.

Cuspidal: defined, v, 403, 351, vii, 244.

Cuspidal Cone: of centro-surface, viii, 352—7.

Cuspidal Cubic: vii, 351.

Cuspidal Curves: and cubic surfaces, vi, 450; (see also Cubic Surfaces, Surfaces).

Cuspidal Isochron: the term, vii, 473.

Cuspidal Locus: in singular solutions, viii, 533.

Cyce: the abbreviation in groups, xii, 119.

Cyclide: of Dupin, v, 467, xii, 615; the term, vii, 246, viii, 262, ix, 64—5; and anchor ring, ix, 18; on, ix, 64—78; the parabolic, ix, 73—8; in Ency. Brit., xi, 634.

Cycloid: the term, xi, 447.

C. XIV.
Cyclotomy: (Kreistheilung), xi, 58, 86.

Darboux, G.: powers of circles and spheres, i, 581; the torus, vii, 247; quartic surfaces, viii, 262; cyclide, ix, 64; continuous function, xi, 539; curves of curvature, xii, 615; quartics, xiii, 13.
Davis, W. Barrett: calculations by, iii, 361, iv, 376; quartic covariants, vii, 335; Söhne's modular equations, ix, 543.
de Bruno, Pab: invariants of degree 12 belonging to quintic, ii, 314; symmetric functions, ii, 602; canonical forms, iv, 52; elimination, iv, 608.
Decadianone: the term, vii, 134; and symmetric, vii, 256.
Decapitation: and seminvariants, xii, 248–50.
Def: the abbreviation in groups, xiii, 120.
Deficiency: and genus of curve, v, 467, 517, 619; of curves, v, 618, vii, 331, xi, 450; the term, vi, 2; and transformation, vi, 3, xi, 482–5; the term applied to surface, vi, 356; of certain surfaces, vii, 394–7, xi, 230; surfaces of negative, viii, 397; of sextic curve, ix, 504–7; of curve and Abelian integrals, xi, 30–6.
Definite Integrals: with complex variables, i, 181–2, 310; differentiation and evaluation, i, 267–72, 587; on a, iv, 28–9; note on Glaisher's paper, viii, 1; note on two, ix, 56–63; (see also Attraction, Potentials, Prepotentials).
Definitions (see the word desired).
Deformation: the term, i, 234; of hyperboloid, xi, 66–7; of skew surfaces, xi, 317–22, 331; (see also Surfaces).
Degen's Mathematical Tables: iv, 40, ix, 478–9, x, 586; report of British Association Committee, xiii, 430–67.
Deg-order: the term, x, 339.
Degrees: of quantities defined, ii, 221.
Degrees, Honorary: conferred on Cayley, viii, xx–xxi; conferred on Sylvester, xiii, 43.
de Jonquières, E.: cubic curves, i, 586, iv, 496; on curves, iv, 454; curves which satisfy given conditions, vi, 191, 192, vii, 41–3; form of equation of curve of a series of given index, vi, 242–3; question from formula, vi, 258–62; points on cubic curve, vii, 550, 553; correspondence, xi, 486.
de la Goupillière, H.: inertia, iv, 566.
de Morgan, A.: root in every algebraic equation, iv, 116–9; root limitation, ix, 39; series, xi, 623, 627; and Sylvester, xiii, 45.
Denumerant: illustrated, iv, 169–70.
Denumerate: defined, iv, 241.
Departure Point: in lunar theory, xii, 19, 270, 295.
Derivation: of points of cubics, vi, 20; and Übereinanderschiebung, vii, 348; and seminvariants, xiii, 362–5.
Derivational—Differential.

Derivational Function: the term, i, 63.

Derivations: extension of Arbogast’s method, ii, 257; iv, 265—71, 272—5; 609; xi, 53; binomial theorem and factorials, viii, 463—73.

Derivatives: and hyperdeterminants, i, 95; of point on cubic, iv, 231; of three binary quartics, x, 278—86; and covariants, x, 340, 377—94; of a function, x, 596—2; in binary forms, xi, 272; (see also Schwarz).

de Saint Laurent, T.: caustic by reflexion, i, 273—5.

Desboves, A.: planetary perturbation, iii, 185, 203; problem of two centres, iv, 532, 586.

Descartes, R.: ovals of, and transformation of curves, i, 478, 479—80, 589; oval of, iii, 66; formula in Epistola, iv, 512; geometry of, xi, 437; (see also Cartesians).

Determinants: applied to distances of points, i, 1—4, 581; iv, 519—2; Pascal’s theorem, i, 43—5; the term, i, 63; theory of, i, 63—79; theory of linear transformations, i, 80—94, 584; of vis viva, i, 284; note on hyperdeterminants, i, 352—3, 589; geometrical reciprocity, i, 377—82; “skew” and “symmetric,” i, 410—3; history, i, 581; multiplication, i, 581, xi, 485; value of certain, iii, 120—3, iv, 460—2; the term, iv, 594, 596—9; and Pfaffian, iv, 600; development of, v, 43—9; tables of cubic binary forms for negative, vii, 51—64; Smith’s Prize dissertation, viii, 551—5; symmetrical, ix, 185—90, x, 579; notation, x, 95—7; theorem in, x, 265—6; in Encyc. Brit., xi, 490—7; decomposition, xi, 495—6; theory of numbers, xi, 604—9; (see also Hyperdeterminants, Skew Determinants).

Determinator: defined, ii, 59.

Determinirende: (indicial) and differential equations, xii, 388, 401, 433.

Developables: and curves, i, 207—11, 586—7; the term, i, 486, xi, 573; from two quadrics, i, 486—95; from quintic curve, i, 509—6; planar, i, 505; from quartic, v, 135—7; prolesians, v, 267—83; quartics, v, 268—71; general theory, v, 271—2; special quintic, v, 272—8; special sextic, v, 279—83; reciprocation of quartic developable, v, 505—10; a special sextile, v, 511—9; sextic, and sextic surfaces, vi, 87—100; foci of a quadric surface, xiii, 51—4; (see also Torse).

Development: of factorial, ii, 98—101; coefficients in powers of \((1 + nx)^{mn} \), xiii, 354—7.

Dew-Smith, A. G.: portrait of Cayley, xi (frontispiece).

Diagonals: and partitions of a polygon, xiii, 93—113.

Diagrams: the term, vii, 403; of planet’s orbit from three observations, 5 plates, vii, to face 478; solar eclipse, vii, to face 492; geodesic lines on ellipsoid, vii, 510; coloured, representing groups, x, 328—30; transformation of elliptic functions, xi, 29; semi-invariants, and solution by square—, xiii, 289—95; (see also Tables).

Diameter: as used by Newton, v, 362.

Diametral planes (see Planes).

Dianome: the term, vii, 133, 148; (see also Quartic Surfaces).

Diaphoric: the term, xi, 156.

Dickinson, L.: portraits of Cayley, vi (frontispiece), vii (frontispiece), viii, xx.

Differences: equation of squared, for cubic, iv, 463—5; relation between certain products of, x, 293—4; on a functional equation, x, 298—306; (see also Equation of Differences).

Differential Equation Memoir: x, 93—133; introductory, x, 93—4, 94—5; notations, x, 95—7; dependence of functions, x, 97; general differential system, x, 98—102; the Multiplier, x, 102—5; Pfaffian theorem, x, 106; Hamiltonian system, derived from general system, x, 106—7; Poisson-Jacobi theorem, an identity in regard to functions \((H, \alpha)\), x, 108—9; peculiar to Hamiltonian system, x, 110—3; conjugate integrals of Hamiltonian system, x, 113—5; Hamiltonian system—the function \(F\), x, 115—8; partial differential equation \(H=\text{constant}\), x, 119—25; examples, x, 125—32; partial differential equation containing the dependent variable, reduction to standard form, x, 132—3.

Differential Equations: and lines of curvature of ellipsoid, i, 36—9; dynamical, i, 276—84; Jacobi’s
DIFFERENTIAL—DOSTOR.

system of, i, 366—9; Jacobi on theory, iii, 174; theorem of Jacobi on Pfaff's problem, iv, 359—63; singular solutions, iv, 426—7; transformation, iv, 574, v, 78—9; umbilici, v, 115—30; solution when algebraic, vii, 5—7; supposed new integration, vii, 36; note on one, vii, 354—6; pair in lunar theory, vii, 535—6, 537—40; integration by series, viii, 455—62; Euler's, ix, 592—608; and theory of elliptic functions, x, 20; and sides of quadrangle, x, 33—5; theory of partial, x, 134—8; elliptic and single theta functions, x, 422—9; hypergeometric series, xi, 17—25; Abel's theorem, xi, 27—8; new formulae for integration of Euler's equation, xii, 65—9; mathematics and physics, xi, 449; connected with elliptic functions, xii, 30—2; Briot and Bouquet's theory, xii, 432—41; of circular functions, xiii, 580; a diophantine relation, xiii, 596—600; and construction of Milner's lamp, xiii, 3—5; Kummer's, of third order, xiii, 69—73; on a partial, xiii, 358—61; Richelot's integral of Euler's, xiii, 323—9; (see also Partial Differential Equations, Riccati, Schwarz, Singular Solutions).

Differential Equations, Linear: invariants of one, xii, 390—3; general theory, xii, 394—403, 444—52, 453—6; theory of decomposition, xii, 403—7.

Differential Invariants (see Invariants).

Differential Relations: of double theta-functions, x, 559—65.

Diferentiation: evaluation of definite integrals, i, 287—72, 587; formulae for, iv, 135—49; fractional, xi, 235—6.

Dimensions in Geometry (see Geometry).

Dimidiate: the term, xiii, 119.

Dimidiation: the term, xiii, 122.

Diophantine Differential Relation: xii, 596—600.

Diptich: the term, xii, 596.

Dirichlet, G. L. (see Lejeune-Dirichlet).

Director, Nodal (see Nodal Director).

Directrix: and scrolls, vii, 69; and the absolute, xiii, 481—9, 501; kinematics of a plane, xiii, 505—6.

Discriminant: and invariant, i, 584; defined, ii, 176, iv, 603, vi, 466—7; of quantics, ii, 320; the sign of, ii, 528; special, connected with curve, v, 163; of quintic problem, v, 592; of binary quantic, vii, 363, ix, 16—7; example of a special, viii, 46—7; (see also Quantics).

Discriminant Locus: the term, vi, 198.

Displacement: the term in Abel's theorem, xii, 110, 157—62.

Distance: general theory of, ii, 561, 583—92, 604—6, v, 550; notion of, in analytical geometry, v, 550; the term, vi, 497; angular, of two planets, vii, 377—9; Cayley and Klein on theory, viii, xxxvi—vii; general notion, viii, 31; Euclidian geometry, xi, 435—7; non-Euclidian geometry, xiii, 480—504; (see also Points).

Distribution of Electricity: on spherical surfaces, iv, 92—8, 99—107, xi, 1—6.

Distributively: the term, vi, 459.

Disturbing Function: in lunar theory, iii, 293—308, 319—43; in rotation of solid body, iii, 486.

Divisors: tables of, ix, 462—70.

Dodecahedron: construction, iv, 82—3; axial systems, v, 531—9; as regular solid, x, 270—3; auto-morphic function for, xi, 169, 179—3, 184, 212—6.

Donkin, W. P.: expansions in multiple series, i, 583; differential equations, dynamical, iii, 191—7, 203—4 344; transformation of trigonometric series, iii, 567; attractions, iii, 567; a definite integral, iv, 29 formulae for differentiation, iv, 135—19; central forces problem, iv, 521; spherical pendulum, iv, 534, 536, 586; dynamical problems, iv, 547, 586; elimination of nodes in three bodies, iv, 551, 556; rotation of solid body, iv, 575, 586.

Dostor, G.: polyhedra, iv, 569.
Dots—Dynamics.

Dots: notation for lines and planes of cubic surfaces, vi, 365—6, 373—449; and seminvariants, XIII, 267.

Double Algebra: XII, 466.

Double Contact: conics having with each other, iv, 436—9.

Double Point: the term, vi, 1; on ground-curve, XII, 110, 129.

Double Pyramid (see Polygons).

Double Tangents (see Bitangents).

Double Theta Functions: x, 155—6, 166—79, 180, 422—9, 474—5, 497, 565; in connexion with 16-nodal quartic surface, x, 157—65; memoir on, x, 184—213; (Part I, preliminary investigations, x, 184—9; Part II, the double theta functions, x, 189—213); addition of, x, 455—62; evolution, xI, 454; transformation, XII, 358—89; (see also Theta functions).

Double Periodic Functions: x, 156—82; and doubly infinite products, xI, 150—63; and definite integrals, IX, 69; transformation of, x, 494—7.

Doubly Infinite Products: x, 129—20, 132—5, 136—55, 156—82, 585, 586, x, 492—4 xI, 46, XII, 50—3.

Drawing: geometrical, vi, 19; of quartic curves mechanically, VIII, 151—5; curves generally, VIII, 179—80; (see also Representation).

Dumas, W.: spherical pendulum, IV, 534, 587.

Dupin, C.: cyclide of, v, 467, IX, 64, XII, 615; quartic and quintic surfaces, vi, 246; theorem of, VIII, 264—5, 562, IX, 84—9.

Duplication of Groups: x, 148—52.

Durège, H.: Landen’s theorem, xi, 389.

Dynamics: differential equations of, i, 276—84; a class of problems, IV, 7—11; similarity of two dynamical systems, VIII, 558—63; Lagrange’s general equation in, IX, 110—2, 198—200; general equations in, IX, 215—7; and time, XI, 444; transformation of coordinates, XI, 575.

Dynamics, Report on Progress of Solution of Certain Problems: IV, 513—9; introductory, IV,
EARTH—ELLIPTOIDS.

513—5: rectilinear motion, iv, 513—6; central forces, iv, 516—26; elliptic motion, iv, 521—4; problem of two centres, iv, 524—32; spherical pendulum, iv, 532—4; motion as affected by the Earth and relative motion generally, iv, 534—7; motion of single particle, iv, 537—8; motion of three mutually attracting bodies in a right line, iv, 538—40; motion of three bodies, iv, 540—1; motion in resisting medium, iv, 541; integration of equations of motion, iv, 542—6; memoirs by Jacobi, Bertrand and Donkin, iv, 546—7; problem of three bodies, iv, 548—52; transformation of coordinates, iv, 552—9; principal axes and moments of inertia, iv, 559—66; rotation of solid body, iv, 566—70; kinematics of solid body, iv, 560—2; rotation round fixed point, iv, 582—3; other cases of the motion of a solid body, iv, 583—4.

Earth, The: rotation of, iii, 485, iv, 534—7; (see also Gravity).

Eclipses (see Solar Eclipses).

Edge: defined, v, 63.

Eindheitig: (Uniform function, xi, 433.

Eisenstein, F. G.: linear transformations, i, 90, 101, 111, 113—6, 585; hyperdeterminants, i, 353, ii, 598—601; elliptic functions, i, 586; cubic forms, iii, 9; quadratic residues, iii, 39—43; finite differences, 263; mathematical tables, ix, 492—3; "development of an idea of," x, 58—9; development of \(1 + n^2e^{m/n}\), xiii, 357.

Elements: Jacobi's canonical, iii, 77; of arc, x, 235—7; a reduction to elliptic integrals, x, 239—42.

Eliminant: the term, iv, 557; of two quantities, xi, 100—2.

Elimination: and theory of curves, i, 337—51, v, 162—7, 416—20; from connected equations, i, 370—4; and linear transformations, i, 457; theorem of Schl"afli, ii, 181—4; a result of, iv, 214—5; general theorem, iv, 1—4; Bezout's method, iv, 38—9, v, 535—6; of nodes in three bodies, iv, 551; the term, iv, 594; text-books on, iv, 608; note on, v, 157—9; problem, vi, 40—2; vii, 22—4; the resultant of a system of two equations, vi, 292—9; theorem, ix, 43—4; formula of, xi, 100—2; theory of equations, x, 490; a problem of Sylvester's, xiii, 545—7.

Ellipse: curves parallel to, iv, 123—33, 152—7; and circle, v, 561; foci of, v, 586; and quadrilaterals, v, 604; circles of curvature, vii, 553, xiii, 337; potential, ix, 281—90; negative pedals, x, 576; cubic curves, xi, 478; in Encyc. Brit., xi, 561—4; foci of quadric surface, xiii, 54; epiconoid, xiii, 82—7; orthomorphism into a circle, xiii, 188—9, 422—4.

Ellipsoid, Attraction of: i, 385—91, 432—44, 582, vii, 350—3, xi, 445; Jacobi's method, i, 511—18; Gauss's method, iii, 25—8, 149—53; Laplace's method, iii, 53—65; Rodrigues' method, iii, 149—53; theory of, iii, 154—5; and terminated straight line, vii, 31—3.

Ellipsoid, Centro-Surface of, memoir: vii, 316—65; introductory, vii, 316—7; the ellipsoid, viii, 317—20; sequential and concomitant centro-curves, vii, 320; expressions for coordinates of point on centro-surface, vii, 320—4; discussion by means of equations, principal sections, &c, viii, 324—30; generation of surface considered geometrically, vii, 330—1; nodal curve, vii, 332—52; eight cuspidal conies, vii, 352—7; centro-surface as envelope of quadric, viii, 357—8; another generation of centro-surface, viii, 359—61; a third generation of centro-surface, viii, 361—2; reciprocal surface, viii, 363; delineation of centro-surface for particular case, viii, 363—5.

Ellipsoid, Geodesic Lines on, memoir: vii, 483—510; introductory, vii, 483—4; course of the lines, vii, 494—5; lines through an umbilicus, vii, 495—501; formulae, vii, 501—3; umbilic geodesies, vii, 503; tables, vii, 504—6; projection on umbilic plane, vii, 507; elliptic function formulae, vii, 507—10; diagram, vii, to face 510.

Ellipsoids: lines of curvature, i, 36—9; surface parallel to, iv, 123—33, 158—65, x, 575; the momental, iv, 560; of gyration, iv, 560; central, iv, 564; projection, v, 487—8; geodesic lines on, vii, 34—5; centro-surface and sextic torse, vii, 113—4; centro-surface, viii, 130—2; geodesic lines, viii, 174—8;

Elliptic Coordinates: equation of wave surface in, xi, 71—2.

Elliptic Functions: Brownin, i, 118, 119; of Jacobi, i, 127, 507, 586; integral calculus, i, 383; multiplication of, i, 534—9, 568—76, 589; addition of, i, 540—9, 589, xii, 294—8; connected with theory of numbers, ii, 48; system of modular symbols, iv, 484—9; Weierstrass, v, 33—7; treatise by Cayley, viii, xviii, xxviii, xiii, 560; a general differential equation, ix, 592—608; a differential equation in theory of, x, 24; and integration, x, 25—7; torse depending on, x, 73—8; reduction of Abelian integrals to, x, 214—22; and single theta functions, x, 422—9, 463, 472; certain algebraic identities, xi, 130—1; evolution of, xi, 451—5; and quartic function, xi, 483; kinds of, xI, 529; symmetrical differential equation and, xii, 30—2; solution of \(x^3+y^3-1=0\), xii, 35—7; Weierstrassian and Jacobian compared, xii, 425—7; Kiepert's \(L\)-equations, xii, 490—2; graphical representation, xiii, 9—19; and sextic resolvent equations, xiii, 473—9; theta and omega functions, xiii, 558—9; (see also Gudermannian, Theta functions).

Elliptic Functions Formulae: Serret's, iii, 3; for geodesic lines on special ellipsoid, vii, 507—10; one, xi, 65, xii, 292—3; connexion of certain, xi, 250—1; geometrical interpretation of certain, xii, 107.

Elliptic Functions, Inverse: i, 136—55, 156—82, 586; and definite integrals, ii, 3.

Elliptic Functions, Memoir on Transformation of: i, 115—75; introductory, ix, 113—4; the general problem, ix, 114—7; \(\Delta k\) modular equations, ix, 117—8; equation-systems, ix, 119—20; \(\Delta k\) form, ix, 121—6; modular equation, ix, 126—37; tables, ix, 128—33, 163; multiplier equation, ix, 138—49; multiplier as rational function of \(u, v, z\), ix, 140—4; multiplication of elliptic functions, ix, 144—7; transformations, ix, 147—55; general theory of \(p\)-transcendents, ix, 155—69; four forms of modular equation and curves represented thereby, ix, 169—75.

Elliptic Functions, Theorems in: xi, 73—7; Landen's, xi, 337—9, 584; Hermite's \(H\)-product, xii, 584—6.

Elliptic Functions, Theory of: i, 290—300, 364—5, 492—4, 587, 589; and quadric-quadric curve, xii, 321—5.

Elliptic Functions, Transformation of: i, 120—2, 132—5, 585, ix, 543, x, 333—8, 611, xi, 26, xii, 416—7, 565—34, 535—55, xiii, 29—32; cubic, iii, 266—7, vii, 44—6, 244—5, 253—6, xii, 46, 556—7, xiii, 64—5; special quartic, ix, 163—6; geometric illustration of cubic, ix, 522—6; orthomorphism, xiii, 191—265.

Elliptic Integrals: reduction of \(\frac{du}{\sqrt{U}}\), i, 224—7; transformation, i, 508—10, ix, 618—21; geometrical representation, ii, 53—6, 113—7; discussion, ii, 93—5; and covariants, ii, 159—92; transformation formulæ, iv, 60—9, 609; expression for second kind of, x, 25—7; note on theory, x, 139—42; some formulæ in, x, 143—8; of third kind, x, 489—92; problem, x, 614; theta functions, xi, 41—6; note on, xi, 64; reduction of an integral to, xi, 270—1; of third kind, formulæ, xii, 340—1.

Elliptic Motion: expansion of true anomaly, iii, 139—42, 567; trilinear equation of second degree, iii, 143—8; theory of, iii, 216—8; tables of functions in theory, iii, 360—474, vii, 516; Lambert's theorem, iii, 562—5, vii, 357—9; and dynamical progress, iv, 521—4; a theorem, ix, 191—3; and body let fall at equator, ix, 241—3.

Elliptic Motion, Disturbed: memoirs on, iii, 270—92, 344—59, 505—15.

Elliptic Space: and non-Euclidian geometry, xiii, 481.

Elliptico-Transcendent Identity: vii, 564.

Ellis, R. L.: orthogonal surfaces, viii, 272; differential equations, viii, 468; Dupin's theorem, ix, 88.

Emanants: of quantities, ii, 321; theory, ii, 518; Bezoutoidal, ii, 525, 526; the term, iv, 604, xiii, 46.

Emanation: theory of, ii, 321.

Encke, J. F.: über die speziellen Störungen, iii, 179—89; fluctuating functions, ix, 19; roots of numerical equations, x, 5.
ENCIYClOPEdIA—EQUATIONS.

Encyclopedia Britannica, articles from on:—Curve, xi, 460—89; Equation, xi, 490—521; Function, xi, 522—42; Galois, xi, 543; Gauss, xi, 544—5; Geometry (analytical), xi, 546—82; Landen, xi, 583—4; Locus, xi, 585; Monge, xi, 586—8; Partition of numbers, xi, 589—91; Theory of numbers, xi, 592—616; Series, xi, 617—27; Surface, xi, 628—39; John Wallis, xi, 640—3.

Endecadic Transformation: in elliptic functions, ix, 152—5.

Endoscopic: the term, i, 588.

Ennead: the term, vii, 256, viii, 566.

Enneadianome: the term, viii, 134.

Envelopes: developable of two equations, i, 486; parallel curves and surfaces, iv, 123—33, 152—7, 158—65; defined, i, 438, vi, 467; of circle, v, 610, vii, 591; and locus in regard to triangle, vi, 72—82; depending on two circles, problem and solution, vii, 573; of plane curve, vii, 606; of a certain quadric surface, viii, 48—50; locus in singular solutions, viii, 533; problem of, viii, 491—2; of family of quadrics, x, 589; theory, xi, 50—1; of variable curves, xi, 475—6.

Epicycloid: and caustic, ii, 345.

Epispheric integrals: Gauss-Jacobi theory, ix, 410—7.

Epitrochoid: xiii, 81—7.

Equal: applied to circles, viii, 31.

Equality: among roots of an equation, ii, 463—70, vi, 300—12; idea of, xi, 431.

Equation of Differences: for equation of any degree, iv, 150—1; for equation of any order, iv, 240—61; tables, iv, 246—56; of all but one, of roots of given equation, iv, 276—91; and quintic equation, iv, 309—24, 609—16; and cubic equation, iv, 463—5.

Equation, Pellian (see Pellian Equation).

Equations: systems of spherical coordinates, i, 213—23; with quantics, defined, ii, 221; auxiliary for quintics, iv, 306—24; determination of reciprocal, with cubic surfaces, vi, 368—70; the term, vi, 466; solubility by radicals, vii, 13—4; system of, problem and solution, vii, 578, 581, x, 601; transformation, ix, 42, 48—51; on a functional equation, x, 298—306; Cassinian, problem, x, 608; Jacobian sextic, xi, 389—401, xii, 493—9; equal roots of, xi, 405—7; of curves, xi, 462—4; of Plücker, xi, 469—73, xiii, 536; in Ency. Brit., xi, 490—521, (introductory, xi, 490; determinant, xi, 490—7; imaginary, xi, 502—6); of right line and circle, xi, 558—61; of cones, xi, 563; seminvariants, xii, 19—21; fundamental, and deformation of surfaces, xi, 331; note on system of, xii, 48—9; for three circles which cut each other at given angles, xii, 559—61, 564—70; anharmonic ratio, xii, 575—9; hydrodynamical, xiii, 6—8; Sylvester on ternary cubic-form, xiii, 47; on soluble quintic, xiii, 88—92; Waring’s formula for sum of nth powers of roots of, xiii, 213—6; sextic resolvent of Jacobi and Kronecker, xiii, 473—9.

Equations, Algebraic: rationalization, ii, 40—4; theory, ii, 124; theorem that every one has a root, iv, 116—9; system of, iv, 171—2, viii, 29—30; in Ency. Brit., xi, 506—21; Anglin’s formula for successive powers of the root of, xii, 33—4; roots of one, xiii, 33—7.

Equations, Cubic (see Cubic equations).

Equations, Modular: for transformation of order 11, xiii, 38—40; for cubic transformation, xiii, 64—5; (see also Transformation of Elliptic Functions).

Equations of Motion: in lunar theory, xiii, 206.

Equations, Solutions of: }^{2n=1}=0, i, 564—6; }^{n=1}=1, and theory of groups, ii, 123—30, 131—2, iv, 88—91, x, 610; }^{3=1}=0, xi, 314—6, xii, 72—3; elliptic function solution of }^{3}+y^{3}=1=0, xii, 35—7; the quaternion }^{Q=Q}^{2}=0, xii, 500—4, 311—2; (abcd)=(ab(c+d)^{2}), xii, 418—20; }^{3}=1=0, xiii, 60—3.

Equator: action of gravity at the, ix, 241—3.
Equilibrium: of four forces, v, 540—1; ix, 201; of skew surface, xi, 317—22.
Equimomental Surfaces (see Surfaces).
Equipollences: Bellavitis, xii, 473—4.
Equipollent: the term, xii, 473.
Equipotential Curve: iii, 258—61.
Essential Singularity of Function: iv, 150.
Eta-Functions: product, xii, 584—6; (see also Theta Functions).
Euler, L.: rotation of solid body, i, 237, iv, 586, 567—9, 587, vi, 135—46; involution, i, 259; elliptic functions, i, 366; skew determinants, ii, 214; transformation of coordinates, ii, 497, iv, 553—7, 587; sums of series, iii, 127; indeterminate equations, iii, 265—7; polyhedra, iv, 84, 86—7, v, 62—5, 617; Determinatio Orbitae Cometae, iv, 519, 587; problem of two centres, iv, 525—7, 587; three mutually attracting bodies in right line, iv, 538—9, 587; motion of three bodies, iv, 540, 587; inertia, iv, 562; kinematics of solid body, iv, 556, 587; rotation formula, v, 537; differential equation of, vii, 261—2, 295—608, xi, 68—9; binomial theorem, viii, 463; mathematical tables, ix, 483—6, 471—2, 477—8, 481, 487; theorem on sums of squares, xi, 294; partitions, xi, 300, xii, 219; intersections of cubic curves, xi, 449; gamma function, xi, 535—6; eight-squares theorem, xii, 465; Latin squares, xiii, 55; differential equation of, integrated by Richelot, xiii, 525—9.
Evans, A. B.: Degen's tables, x, 556.
Evectant: of quantities, ii, 321.
Evector: of quantities, ii, 321.
Evolutes: theory of, v, 473—9; and parallel curves, viii, 31—45; nodes of, viii, 329, 351.
Exoscopic: the term, i, 588.
Expansions: in multiple sines and cosines, i, 19—24, 583; in Laplace's coefficients, i, 375—6; of true anomaly, iii, 139—42; numerical, iv, 470—2.
Expectation: problem and solution in, x, 587; (see also Probability).
Experience and Cognition: xi, 431.
Exponential Functions: and double theta functions, x, 184—5; the term, xi, 524—7.
Extension: in conformal representation, xi, 75.
Extent: the term in semivariants, xiii, 269, 363.
Extraordinaries: and non-commutative algebras, i, 125—31, 301; the term, xii, 60, 461.
Facients: defined, ii, 221, iv, 604, vi, 464.
Factions: the term, ix, 426.
Factorial Expressions: summation of, iii, 250—3.
Factors, Special: the term, i, 337.
Faculative: the term, vi, 156, 365; lines of cubic surfaces, vi, 450.
Facultative Points: of Sylvester, xiii, 46.
Family of Quadrics: envelope of, x, 559.
Family of Surfaces: part of orthogonal system, viii, 269—91.
Ferrers, N. M.: conjugate partitions, ii, 419; area of conic, iii, 143—S; correspondence, x, 290; Legendrian coefficients, xii, 563.
C. XIV.
Fiedler, W.: symmetric functions, xi, 602.
Figures: for Pascal’s theorem, vi, 116—23; mechanical construction of conformable, x, 406; use of arabic, xi, 446.
Finite Differences: formulæ in, iii, 132—5, xii, 412—5; electricity on spherical surfaces, iv, 92—8, 99—107; theorem and demonstration, iv, 262—1; general equation of differences of second order, x, 47—9; Stirling’s theorem, x, 267—8; table of, xi, 144—7.
Finite Groups (see Groups).
Finiteness: of concomitant system of quantic, vii, 334, xi, 272—80.
First Kind: of Abelian integrals, xi, 408—11.
First Order: of differential equations, xii, 432—41 (see also Differential Equations).
Five-dimensional Geometry: ix, 79; (see also Hypergeometry).
Five-pointed Contact: conic of, iv, 207—39.
Flat: the term in covariants, vii, 406—8.
Flat-cone: the term, viii, 102.
Flecnodal Curve: vi, 342; and torse, vi, 345, 582—5.
Flecnodes: defined, ii, 28—32.
Flecnodal Planes: of a surface, x, 262—4.
Flecnodes: defined, ii, 28—32, ix, 264; of curve in transformation of elliptic functions, ix, 170—1.
Flex: the term, v, 521.
Flexure of Skew Surface: xi, 317—22; (see also Surfaces).
Fluctuating Functions: addition to Lord Rayleigh’s paper, ix, 19—20.
Fluxions: and Landen, xi, 583.
Foci: of conics, iv, 505—9, vii, 1—4, 571; theory of, vi, 515—34; and antifoci, problem and solution, vii, 567; locus of, problem and solution, vii, 568.
Focus: the term, vi, 515, ix, 552, xi, 481.
Foot: non-Euclidian geometry, xiii, 483—4.
Foresenex, D. de: multiplo algebra, xi, 466.
Forces: equilibrium of, v, 540—1, vii, 91—5; general equation of virtual velocities, ix, 205—8; resultant, x, 589; (see also Dynamics).
Forms: cubic, iii, 9—12; quadratic, iii, 11—12; theory, xi, 604—9.
Formula: Jacobi’s canonical, for disturbed motion, iii, 76—7; in finite differences, iii, 132—5; for differentiation, iv, 135—49; distances of point, and tactions, iv, 510—2; signification of elementary one in solid geometry, v, 498—9; integrals for intersections of line and conic, v, 500—4; canonical form of quantics, vi, 158—4; of two sets each of four concyclic points, vi, 509—11, 512—5; focal, and polygonal curves, vi, 547, 549; of de Jonquières, vii, 41—3; transformation of coordinates, vii, 95—6, 97—8; geodesic lines on ellipsoid, vii, 501—3, 507—10; trigonometric, xii, 108.
Forsyth, A. R.: biographical notice of Cayley, viii, ix—xlv; addition of elliptic functions, xii, 294.
Foucault, J. B. L.: the earth’s rotation, iv, 535, 536, 585.
Fouché, M.: polyhedra, iv, 609.
Fourier, J. B. J.: theorem as to roots of equations, x, 5; theory of equations, xi, 500; (see also Newton-Fourier Theorem).
Fourth Dimension: Cayley on, viii, xxxiii—v.
Fraction-Theorem: Jacobi’s, xii, 123—5.
Francais, J.: imaginaries, xii, 468.
Franklin, F.: quantics, xiii, 47.
Fresnel, A. J.: wave-surface, iv, 420, xi, 449; wave and tetrahedroid surfaces, x, 252; Sylvester on the optical theory of, xiii, 44.
Fuchs, L.: Schwarzian derivative and polyhedral functions, xi, 149; linear differential equations, xii, 394, 453.

Function: the term "derivational," i, 63; transformation of bipartite quadric, ii, 497—505; relation among derivatives of, x, 590—2; octahedron, xi, 128—9; general theory of, xi, 430—41; linear, xi, 492; in Ency. Brit., xi, 522—42, (introductory, xi, 522—3; known functions, xi, 523—37; functions in general, xi, 537—41; calculus of, xi, 541—2; two invariants of quadri-quadric, xiii, 67—8; on the modular \(\chi \), xiii, 338—41.

Functional Determinant: the term, ii, 319, iv, 607.

Functions: doubly-periodic, ii, 150—63; notation of algebraic, ii, 185—8; \(al(x) \) of Weierstrass, v, 33—7; homotypical, v, 50; rchipic, ix, 34; tests for dependence of, x, 97; early history of theory, xi, 451—5; values of symmetric, xiii, 318—21; on lacunary, xiii, 415—7; (see also Schwarzian Derivative, Generating Functions, Symmetric Functions).

Galileo: and dynamics, xi, 447.

Galois, E.: groups and permutations, ii, 134; groups, xi, 133, xiii, 533; theory of numbers, xi, 437, 593, 614; theory of equations, xi, 518—9, 520, 521; biographical notice, xi, 543.

Gamma Function: theory, i, 309—16, 588; a double infinite series, ii, 8; the term, xi, 534; (see also Definite Integrals).

Gaultier, L.: systems of circles, iii, 113; radical axis, xi, 465.

Gauss, J. K. F.: determinants, i, 64; linear transformations, i, 585; attraction of ellipsoids, iii, 25—8, 149—53; central forces problem, iv, 520, 588; relative motion, iv, 534; binary quadratic forms, v, 618; pentagramma mirificum, vii, 37—8; Thoerism Motus, vii, 414; geodesic lines on quadric surface, viii, 156—61; potential of ellipse, ix, 231—2; epispheic integrals, ix, 321, 410—17; mathematical tables, ix, 466—7, 470, 472, 475—7, 488; roots of unity, xi, 60; lemniscate, xi, 64; calculation of log 2, xi, 70; geodesic curvature, xi, 323—4; his theory of surfaces, xi, 331—6; imaginary variables, xi, 459; attractions, xi, 448; theory of equations, xi, 455, 504, 516; theory of numbers, xi, 455, 599, 603; gamma function, xi, 534; biographical notice, xi, 544—5; multiple algebra, xiii, 471—2; roots of algebraic equation, xiii, 35; orthomorphosis, xiii, 191; application of surfaces to each other, xiii, 253—64.

Generating Functions: of symmetric functions, Borchard's, ii, 417, 421—3; connected with covariants, ix, 537—42; of quintic, x, 339—460; of quartic, x, 341; of sextic, and binary sextic, x, 394—400; of binary septic, x, 408—21; semi-invariants of a given degree, xiii, 306—8.

Generation: of bicircular quartic, x, 223—6.

Generator: the term, v, 169—70, 173—9, 181; nodal, of scrolls, v, 169—70, 179—81.

Generatrix: and the absolute, xiii, 481—9, 501.

Genus of Curve: (Geschlecht), after Riemann, v, 467, 517, 619.

Geodesic Lines: property of, iii, 38; on oblate spheroid, vii, 15—25; on ellipsoid, vii, 34—5; in Ency. Brit., xi, 629, 636—7; of pseudosphere, xii, 229—38; wave surfaces, xiii, 222; (see also Ellipsoids).

Geodesic Lines, in particular on quadric surface, memoir: viii, 156—78, 188—99; preliminary formulæ, viii, 156—5; general theory of them on a surface, viii, 159—62; circular curves are geodesics, viii, 162; chief lines not in general geodesics, viii, 163; special form of geodesic equation, viii, 163—4;
GEOMETRICAL—GORDAN.

100

geodesics on quadric surface, viii, 164—70; formulæ for position of point, viii, 170—4; ellipsoid and skew hyperboloid, viii, 174—6, 188—99; tables, viii, 196—9.

Geometrical Construction: in optics, x, 28; of heptagon, x, 609.

Geometrical Representation: of elliptic functions, iii, 3; of imaginary variables, x, 316—23; of an equation between two variables, xii, 104.

Geometry: of n dimensions, i, 55—62; reciprocity, i, 377—82; of quantics, ii, 222; of one and two dimensions defined, ii, 561—2; of one dimension, ii, 563—9, 583—96; of two dimensions, ii, 569—83, 586—92; relations of, metrical and descriptive, ii, 592; non-Euclidian and hyper-, ii, 600—6, viii, xxxiii—v, 409—13, xii, 220—38; Lobatschewsky's imaginary, v, 471; problem of permutation, v, 493—4; significance of elementary formula, v, 498—9; notion of absolute, v, 550; drawings in, vi, 9; constructive, vii, 26—30; transformation, vii, 121—2; Cayley and Klein on metrical, vii, xxxvi—vii; hyperbolic, elliptic and parabolic, viii, xxxvii; Cayley's work in analytical, vii, xxxviii; formulæ relating to right line, x, 287—9; considerations on solar eclipse, x, 310—5; interpretation of algebraic equations, x, 551; solid, xi, 224; Schubert's numerative, xi, 281—93; Mill on, xi, 432—4; Euclidian, xi, 434—7; Cartesian, xi, 437—9; abstract, xi, 441—2; origin, xi, 445—8; in Greece, xi, 446; evolution of descriptive, xi, 448—9; date of extensions in, xi, 449—51; plane and solid, xi, 450—1; function in, xi, 522—3; interpretation of elliptic function formulae, xii, 107; d'Alenbert Carnot paradox, xii, 305—8; of the compass, xiii, 314—7; algebra and logic, xii, 439; (see also Hypergeometry: for General Theory, see Quantics, sixth memoir).

Geometry, Abstract, Memoir on: vi, 458—63, 596; introductory, vi, 456—7; space, vi, 456—7; general explanations, vi, 457—62, 596; ordinal relation, order, vi, 468; parametric relations, vii, 463—4; quantics, notations, etc., vi, 464—6; resultant, discriminant, vi, 466—7; consecutive points, tangent onals, vi, 467—9.

Geometry, Analytical, in Ency. Brit.: xi, 546—82; introductory, xi, 546; Part I, pure analytical, xi, 546—67; is descriptive, xi, 552—6; metrical theory, xi, 556—7; equations of right line and circle—transformation of coordinates, xi, 558—61; the conics, xi, 561—4; tangent, normal, circle and radius of curvature, xi, 564—5; coordinates, xi, 566—7; Part II, solid analytical geometry, introductory, xi, 567—9; metrical theory, xi, 570; line, plane, and sphere, xi, 571—2; cylinders, cones, ruled surfaces, xi, 572—3; transformation of coordinates, xi, 573—6; quadric surfaces (paraboloids, ellipsoids, and hyperboloids), xi, 576—9; curves: tangent, osculating plane, curvature, xi, 579—80; surfaces: tangent lines and plane, curvature, xi, 580—2; (see also Hypergeometry).

Gergonne, J. D.: caustics, ii, 118, 339, 341, 368; polyconal curves, vi, 520.

Geschlecht: (genus) of curve, after Riemann, v, 467, 517, 619.

Glaisher, J. W. L.: notation for elliptic functions, i, 548; definite integration, viii, 1; centro-surface of ellipsoid, viii, 364; report on mathematical tables, ix, 461—99; development of an idea of Eisenstein, x, 58—9; proof of Stirling's theorem, x, 267—8; quadrilateral inscribable in circle, x, 575; log 2, xi, 70; elliptic functions, xi, 73; least factors of numbers, xi, 430; modular function x_2, xiii, 338—41; theta and omega functions, xiii, 558—9.

Glide: the term, i, 236.

Goniometry: Cotterill's problem in, x, 295—7.

Göpel, A.: theory of numbers, iv, 41; theta functions, viii, xlii, x, 464, 489, xii, 363—4; double theta functions and 16-nodal quartic surface, x, 157, 162, 172, 173, 175, 180—1; table of tetrads, 505, 549—51; double theta functions, xi, 454.

Gordan, P.: binary quintic and sextic, vi, 190; irreducible covariants of binary quantic, vii, 334, 341, 345—53; covariants of binary quantic, viii, 566; finiteness of concomitant systems, x, 256; derivatives, x, 349, 377; Schwarzian derivative and polyhedral functions, x, 149, 199; finite groups, x, 237—41; covariant forms and tables, xi, 272; concomitants of ternary cubic, xi, 343; Abelian functions, xii, 102, 109; icosahedral substitutions, xiii, 552.
Goursat, E.: Kummer's differential equation, xiii, 69—73.
Graduation Curve: the term, vii, 426.
Graves, J. T.: algebraic couples, i, 128; geometry of position, i, 319, 414—20; imaginaries, i, 586.
Gravity: and relative motion, iv, 534—7; action at equator, ix, 241—3; Clairaut's theorem, x, 17—8; effects of theory, xi, 447—8.
Green, G.: attractions of ellipsoids, i, 582; attraction of terminated straight line, vii, 32; potentials of polygons and polyhedra, ix, 279; integration of prepotential equation, ix, 320—1, 343, 393—404; attractions, xi, 448.
Grenelers: the term, ix, 393.
Green, H. R.: locus, envelope, and triangle, vi, 72.
Griffiths, J.: series of triangles, vii, 599; curve of sixth order, x, 612; deduction from $y = \sin(A + B + C + ...)$, xii, 58—9.
Ground-curve: and Abel's theorem, xii, 38, 109—216.
Groups: of lines and points, i, 317—22, 356—61, 414—20, 550—6; depending on symbolic equation $e^a = 1$, ii, 123—30, 131—2, iv, 88—91; theory of, iv, 88—91, x, 324—30, xii, 639—56; the term, iv, 584, 586, vii, 123; rotations of polyhedra, v, 329, 559; Cayley's work at, viii, xxxiii; theorems on, x, 149—55, 153—4; desiderata and suggestions on theory, x, 401—6; partitions and theory of, xi, 62; homographic transformations, xi, 189—90, 196—208, 257—41; linear transformation of a variable, xi, 237—41; Jacobian sextic, xi, 359, 393—6; the notion, xi, 509—10; Latin squares, xiii, 55—7; substitution groups for two to eight letters, xiii, 117—49; of points, non-existence of a special, xiii, 212; quotient G/H in theory of, xiii, 336—7; illustrations of Sylow's theorems on, xiii, 539—3; of sixty icosahedral substitutions, xiii, 552, 556.
Grunert, J. A.: difference-table, xi, 144.
Gudermannian: v, 36—8, 617; Lobatchewsky's imaginary geometry, v, 472; tables of, v, 617.
Halphen, G. H.: inverse elliptic functions, i, 586; curves in space, v, 613—7; higher singularities of plane curves, v, 619; curves satisfying given conditions, vi, 594—5; classification of curves, xi, 451; invariants of differential equations, xii, 392—3; transformation in elliptic functions, xii, 29; Sylvester on reciprocants, xiii, 48; reciprocants, xiii, 333, 366, 368—81, 351—98; characteristic n in the theory of curves in space, xiii, 408—72.
Halsted, G. B.: hyperspace and non-Euclidian geometry, ii, 606.
Hamilton, Sir W. R.: quaternions, i, 123—6, 238, 335, 586; form of equations of motion, i, 284; homographic transformation of quadrics, ii, 105, 133; focal relations, ii, 143; problem of three or more bodies, iii, 97—103, differential equations, iii, 164, iv, 514; method of dynamics, iii, 165—74, 260, 262; equations of motion, iii, 186; isochronism of circular hodograph, iii, 262—5;
HAMMOND—HERSCHEL.

essential singularity of function, iv, 105; central forces problem, iv, 529; hodograph, iv, 520; transformation of coordinates, iv, 558—9, 588; ray systems, viii, 504, xii, 571—5; surface orthogonal to set of lines, ix, 587; system of differential equations, x, 113—8; equations of central orbit, x, 613; on mathematics, xi, 431; algebra and time, xi, 443; conical refraction, xi, 449; multiple algebra, xii, 460, 466, 474—5; Sylvester on Hamiltonian numbers, xiii, 48; (see also Differential Equations).

Hammond, J.: theory of tamisage, xi, 409—10; semivariants, xii, 253; Sylvester's reciprocants, xiii, 47—8, 381, 388; on Hamiltonian numbers, xiii, 48.

Hansen, P. A.: lunar theory, iii, 13—24, 291—2; elliptic orbit, iii, 95; expansion of true anomaly, iii, 140; planetary theory, iii, 263—9, ix, 180—3; disturbed elliptic motion, iii, 270—1; disturbing function in lunar theory, iii, 293, 319—43; variation of plane of planet's orbit, iii, 516—8; elliptic motion, iv, 522, 523, 588; relative motion, iv, 536, 588; pendulum, iv, 541, 588; spheroidal trigonometry, ix, 197.

Harley, E.: equation of differences, iv, 241, 245; symmetric products and quintics, iv, 310—13; quintics, v, 53; a differential equation, vii, 354; theory of equations, xi, 529; invariants, xii, 396—1.

Harmonic: defined, v, 342.

Harmonic Relations: of two lines or points, ii, 96—7; theory of, and two or more quadrics, ii, 529—40.

Harmonics: symmetric, ii, 555; inscribed, iii, 113; reciprocal lines, xiii, 58—9; and non-Euclidian geometry, xiii, 482—9.

Harriot, T.: mathematical discoveries, xi, 437.

Hart, A. S.: cubic curves, iv, 499; relative motion, iv, 533; triple tangent planes, vi, 372, 373; nine-point circle, xiii, 548.

Haughton, S.: inertia, iv, 564—5, 588.

Haupttangenten: (inflexional tangents), viii, 157.

Hearn, G. W.: on a geometrical locus, i, 496; quartic curves, i, 496; quadric curves, v, 262.

Heath, R. S.: non-Euclidian geometry, xiii, 481, 499.

Helmholtz, H. von: hydrodynamical equations, xiii, 6—8.

Hemihedron: the word, x, 328.

Hemipolyhedron: the word, x, 328.

Hensley, P. J.: foci of conics, iv, 505—9.

Heptacon (see Polyacra).

Heptagon: construction, x, 609.

Hermite, C.: homographic transformation of quadric into itself, ii, 107; elliptic integral and covariants of quartic, ii, 191; law of reciprocity, ii, 232, 234; skew invariant of quintic, ii, 233; transformation of quadric function, ii, 499; hyperdeterminants, ii, 598—601; elliptic integrals, iv, 68—9; ternary cubics, iv, 326, 330; Tschirnhaus's transformation, iv, 364—7, 375, vi, 165, 170; automorphic transformation, iv, 416; elliptic functions and solution of quintic, iv, 484—9; matrices, v, 438, xii, 367—70, 386; quantics, vi, 147; quintic equation, vi, 170; nodal cubic, vi, 174—6; canonical form of quintic, vi, 177—83; transformation of elliptic functions, vii, 44, ix, 113, xii, 337, 416—7, xiii, 31, 39; reduction of Abelian integrals, x, 214; concomitants of ternary cubic, xi, 342; elliptic functions, xi, 452; theory of equations, x, 520; Abelian functions, xii, 98; transformation of double theta functions, xii, 358; H-product theorem, xii, 384—6; cubic equations, xiii, 349; omega functions, xiii, 558.

Herschel, Sir J. P. W.: finite differences, iv, 95, 107, 262; Brink's formulae, x, 58—9; difference table, xi, 144.
Hesse-Hyperboloid.

Hesse, L. O.: linear transformations, i, 87, 113—6, 232—3, 584, 585; vi, 22—3, 73; cubic curves, i, 194, ii, 389; involution, i, 259; hyperdeterminants, i, 354; abstract of memoir on quadric surfaces, i, 425—7; inflexions of cubic, i, 584, ii, 29, iii, 48; on elimination, iv, 3; on inflexions, iv, 186, xi, 473; double tangents, iv, 186—7, 343—6; cubic forms, iv, 353; geometric transformation, vii, 121—2; bitangents of quartic curve, vii, 123—4; double theta functions, x, 177; triple theta functions, x, 446, 448, 451; the thirty-four concomitants of ternary cubic, xi, 342; bitangents of a plane quartic, xii, 76.

Hessians: and Eisenstein's theorem, i, 555; defined, ii, 319, iv, 607, xi, 471, 474; and Pipplan, ii, 381—2, 383—95, 416; the sign for, ii, 541; the quadricovariant, ii, 545; of quaternary functions, ix, 90—3; of a quartic surface, x, 274—7; (see also Quantics).

Hexagon: and conic, problem, v, 576; theorem of inscribed, xi, 556.

Hexagram (see Pascal's theorem).

Hexahedron: edges of, problem, x, 613; automorphic function for, xi, 184.

Higher Singularities of Curves (see Singularities).

Hilbert, D.: curves in space, v, 614; abstract geometry, vi, 596.

Hills: altitude, and roots of algebraic equation, xiii, 33—7.

Hirst, T. A.: negative pedals, iv, 164.

History: importance of mathematical, viii, xii.

Hodograph: isochronism of circular, iii, 262—5; Hamilton's, iv, 520; and pedal curves, v, 113.

Hölöder, O.: theory of groups, xiii, 336, 533.

Holomorphic: the term, xi, 81.

Homaloids: prepotentials of, ix, 408—9.

Homographic Figures: matrices, ii, 219; theorem, iv, 442—5.

Homographic Function: distribution of electricity, xi, 2—6; and matrix of the second order, xi, 252—7.

Homographic Relations: and theory of numbers, ix, 613; function of, x, 298—306; powers of, x, 305—6, 307—9.

Homographic Transformation: of quadric surfaces, ii, 106—112; of single theta functions, xii, 337—43; (see also Groups, Transformations).

Homographies: correspondence with rotations, x, 153—4, xi, 237—8.

Homography: different classes of, ii, 219—220; and quadrics, ii, 536—40; ternary quantics and theory of, ii, 565—9, 578; of ranges and pencils, ii, 578.

Homology: of cones, i, 523, 557; the term, i, 557—8; of sets, iii, 35.

Homotypic: the term, vii, 123.

Homotypical: the term, v, 50.

Hopkins, W.: attractions and multiple integrals, i, 382.

Hydrodynamics: note on equations of, xiii, 6—8.

Hydrogen: trees of, ix, 427—60, 541—5.

Hyperbola: rectangular, iii, 254, v, 554; classification, v, 354—400, viii, xxxvii; arc of, xi, 337—9; and cubic curves, xi, 475; in Ency. Brit., xi, 561—4; foci of quadric surface, xiii, 54; and epicycloid, xiii, 52—7; tactions, xiii, 150—69; (see also Conics).

Hyperboloid: coordinates of, v, 72; and scrolls, vii, 65; and tractor, vii, 73—5; passing through three given lines, vii, 86—8; Mercator's projection, vii, 569, ix, 237—40; deformation, xi, 66—7; in Ency. Brit., xi, 576—9; confocal Cartesians and right lines of, xii, 587—9.
Hyperdeterminants: the term, i, S1, 95, 114, 555; note on, i, 352—5, 588; a system of certain formulae, i, 533; theory, i, 577—9; theory of permanents, ii, 19; theory of intermaxmints, ii, 26; quantities, ii, 223; theory of semi-invariants, xii, 344; Sylvester's work in, xiii, 46; an identity, xiii, 210—11; (see also Covariants, Invariants).

Hyperdimensional Space: quadrics in, ix, 79—83; (see also Hypergeometry, Hyperspace).

Hyperelliptic Functions: trisection of, vii, 594; and theta functions, x, 162—5, 166—79, 184—214, 551—5; and triple theta functions, x, 432—6; addition-theorem, x, 455—62; the term, xi, 533—4; and nodal quartics, xii, 196—205; (see also Theta-Functions).

Hyperelliptic Integrals: of first order, xii, 98—9.

Hypergeometric Series: summation of a certain factorial expression, iii, 250—3; theorem, iii, 268—9; differential equations, xi, 17—23; note on, xi, 125—7; and Schwarzian derivative, xi, 176—9.

Hypergeometry: of n dimensions, i, 55—62; a branch of mathematics, viii, xxxii—v; five-dimensional, ix, 79—83; and quadric surfaces, ix, 246—9; 21 coordinates of conic space, xi, 82—3; Sylvester's work in, xiii, 46; (see also Hyperspace, Prepotentials).

Hyperspace: and quantities, ii, 222; and non-Euclidian geometry, ii, 606; representation by means of, vi, 198; of four dimensions, special theorem, ix, 246—9; (see also Hypergeometry).

Icosahedra: construction, iv, 81—2; axial systems, v, 531—9; Klein on rotations of, x, 153; as regular solids, x, 270—3; automorphic function, xi, 169, 179—83, 186, 212—6.

Icosahedral Substitutions (see Substitutions).

Ideal: the term, vi, 456.

Ideal Numbers: xi, 456.

Idem: defined, xii, 66.

Idempotent: the term, xii, 61.

Identities: cubic, v, 597; trigonometrical, viii, 525, xi, 38, xii, 338—40; elliptic transcendent, viii, 564; a transcendental, xi, 37; algebraic, xi, 63—4, 130—1, xiii, 76—8; a hyperdeterminant, xiii, 210—11.

Imaginaries: on an octuple system of, i, 501; eight-square, xi, 368—71, xii, 465; the term, xi, 439; theory of equations, xi, 502—6; and function, xi, 523; associative, xii, 61, 103—6; perpendicularity, xii, 466—72; roots of equation, xiii, 36; Sylvester's work at, xiii, 46; quaternions, xiii, 542.

Imaginary Quantities: logarithms, vi, 14—8; geometrical construction relating to, xi, 258—60.

Imunit: defined, iv, 109.

Improper: conditions for curves, vi, 193.

Increment: the term, vi, 468.

Indefinite: applied to integration, ix, 500—3; the term, xiii, 290.

Indeterminate Equations: problem in indeterminate analysis, iii, 205—7.

Index: to philosophic memoirs, report on, v, 546—6, 620.

Indicial Equation: of differential equation, xii, 398, 453.

Indicial Function: of differential equation, xii, 398, 401.

Inertia: axes and moments of, iv, 475—50, 539—60.

Ineunt: defined, ii, 574, v, 521, vi, 469; non-Euclidian geometry, xiii, 450.

Infinity: in geometry, xi, 464.

Infenxional Tangents: and geodesic lines, viii, 157; (see also Tangents).

Infenxions: of cubical divergent parabolas, v, 284—8; of cubic curve, i, 584, iii, 48; Hesse on, iv, 186, v, 493—4, xi, 473; of curves, xi, 471—3, 480.

Integral Calculus: some formulae of, i, 309—16, 588; transformation, i, 383; Picard's memoir on, xii, 405—11.

Integral Functions: Legendre's coefficients, i, 375—6; the term, iv, 603—4, xi, 523; prepotential surface, ix, 321—30, 330—4, 332—9; potential solid, ix, 334—7; epaspheric, ix, 410—17; reduction
INTEGRALS—ISOCHRONIC.

of transcendental, \(x \), 214—22; hyperelliptic, of first order, xi, 98—9; regular, of differential equation, xii, 395—6; number of, xii, 399; subregular of differential equation, xii, 444—52; (see also Abelian Integrals, Definite Integrals, Elliptic Integrals, Transformations).

Integrals: transformation of double, ix, 250—2; of differential equations of first order, x, 19.

Integration: a supposed new, viii, 36; theorem of, vii, 588; by series of differential equations, viii, 458—62; a process of, ix, 257—8, x, 15, 29; indefinite, ix, 500—3; Aronhold's formulas, x, 12—14; of Euler's equation, xi, 68—9.

Integrator: mechanical, xi, 52—4.

Intercalation: root-limitation, ix, 22—7; for right line, ix, 28—33; Sylvester's theory of, xiii, 46.

Intermediates: of two quantics, defined, ii, 515; of binary quartic, ii, 549; and ternary cubics, iv, 326.

Intermutants: the term, ii, 19, 26, iv, 594, 600.

Interpolation: Smith's Prize dissertation, viii, 531—5.

Intersect-developable: of two quadrics, i, 486—95.

Intersections: the term, vii, 546; of two curves, ix, 21, xii, 117—20; of cubic and line, xii, 100.

Invariable Plane: and rotation of solid body, i, 237, vi, 142.

Invariants: the term, i, 577, 588, ii, 176, 224, iv, 594, 605, xiii, 46; and discriminants, i, 584; determined by differential equations, ii, 164—78; and roots, ii, 170; differential equation satisfied by, ii, 176—8; and binary quantities, ii, 266—8; of quartic, and covariants of cubic, analogous, ii, 553; bibliography, ii, 589—601; of biternary quantics, iv, 349—58; 18-thic of quintic in terms of roots, vi, 154—6; Cayley founder of, vii, xxviii—xxx; his work, vii, xxx—xxxii; and transformation of quanties, viii, 385—7; quadratic transformation of a binary form, viii, 398—400; identical equation connected with theory, ix, 52—5; Hessian of quaternary function, ix, 90—3; minimum x. o. r. of binary septic, x, 408—21; stereographic projection, xi, 187—9; in geometry, xi, 474; of a linear differential equation, xii, 390—3; Sylvester's work at, xiii, 46, 47; two, of quadri-quadratic function, xiii, 67—8; differential, and reciprocants, xiii, 366—404; Pfaff, xiii, 405—14; (see also Covariants, Linear Transformations, Seminvariants).

Invariants and Covariants: xii, 22—9; standard solutions of system of linear equations, xii, 19—21; finite number of the covariants of a binary quantic, xii, 558.

Inversion: of quadric surface, viii, 67—71; note on, ix, 18.

Inverts: quadric function of, xi, 133—6.

Involutant: of two binary matrices, xiii, 74—5.

Involution: theory of geometrical, i, 259—66, 587; and two or more quadrics, ii, 529—40; of six lines, iv, 552, vii, 66, 85, 95; lines in, v, 1—3; theory, v, 295—313; the term, vi, 460; of four circles, vi, 505—8; and ternary quadrics, xiii, 359—3.

Involutions of Cubic Curves, Memoir: v, 313—53, vii, 275; explanations, definitions, and results, v, 314—8; general formulae for critical centres, v, 318—9; twofold and one-with-two fold centre, v, 319—24; tangents at a node, v, 325—8; triangle of critical centres, v, 328—9; the three-centre conic, v, 329—36, 337—8; transformation equation of cubic, v, 339—41; cubic locus, harmonoeconies, and harmonic conic, v, 341—5; miscellaneous, v, 345—53.

Irrational: and subrational, ix, 315.

Irreducible: the term, vii, 336, xii, 23.

Irreducible Concomitants: of quintic, x, 342.

Irreducible Covariants: and invariants, ii, 230.

Irreducible Syzygies (see Syzygies).

Irregular: the term, vi, 457, 459.

Isocentric Lines: and planet's orbit, vii, 468.

Isobaric: the term, xiii, 266.

Isobarism: of covariants, ii, 233.

Isochronic: the term, nodal and cuspidal, vii, 473.

C. XIV.
ISOCHRONISM—JOHNSON.

Isochronism: of circular hodograph, xi, 262—5.
Isoparametric Lines: and planet's orbit, vii, 467.
Isoperimetrical Problem: vii, 263.
Isothermals: of Meyer, xiii, 175.

Jacobi, K. G. J.: theory of algebraic curves, i, 53; determinants, i, 63, 64, 66; quaternions, i, 126, 127, 586; inverse elliptic functions, i, 132, 136, 152, 156, 162, 180; rotation of solid body, i, 238, iv, 575, 576—7, 579; involution, i, 259, 263; definite integral, i, 270—1; dynamical differential equations, i, 276—9; elliptic functions, i, 290—300, 507, 557, xi, 452; demonstration of theorem on focal lines, i, 362—3; differential equations of Abelian functions, i, 366—9; skew determinants, i, 411; simultaneous linear transformations, i, 428; transformation of integrals, i, 440, 442; attraction of ellipsoids, i, 511—8; solution of equation $x^m - 1 = 0$, i, 564; Lagrange's theorem, ii, 7; geometrical representation of elliptic integral, ii, 56; in-and-circumscribed polygon, ii, 141; partition of numbers, ii, 248; lunar theory, iii, 13; canonical formula for disturbed motion, iii, 70—7; problem of three or more bodies, iii, 102; transformation, iii, 129; finite differences, iii, 132—5; complete integral of partial differential equation, iii, 166; planetary theory, iii, 173; calculus of variations and differential equations, iii, 174—84, 200, 202; De Motu Puncti Singularis, iii, 182—3, 202; problem of three bodies, iii, 519—21, iv, 541, 548—51, 559, v, 23, vi, 183; Theoria Nova Multiplicatoris, iii, 183—5; theory of ideal coordinates, iii, 185; Encke's memoir über die speciellen Störungen, iii, 179—80; in-and-circumscribed triangle, iii, 236; disturbed elliptic motion, iii, 270—1; canonical system of formula, iii, 290; inversion of series, iv, 30—7; transformation of elliptic integrals, iv, 60, 64; double tangents, iv, 187; conies, iv, 207; Pfaff's problem, iv, 359—63; central forces problem, iv, 520, 589; Nota Methodus, iv, 515, 521, 589; elliptic motion, iv, 522, 558; problem of two centres, iv, 530, 532, 589; motion of a single particle, iv, 537—8, 589; motion in resisting medium, iv, 541, 589; motion of a point, iv, 547, 589; elimination of nodes, iv, 551, 589; transformation of coordinates, iv, 554, 557, 589; Weierstrass's function $\psi(x)$, v, 34—5; transformation of elliptic functions, v, 472, ix, 103, 113—75, xii, 59, 505—34; Canon Arithmeticae, vi, 83—6, xi, 85, 86; the Jacobian relation, vi, 467; geodesic lines on ellipsoid, vii, 493; transformation of double integral, ix, 250—2, 254; epipspherical integrals, ix, 321, 410—17; mathematical tables, ix, 472—3, 484—5; series, x, 25—7; Poisson's theorem, x, 108—9, 110—3; theta functions, x, 156, 473, 478, 490, 496—7, xi, 41—6, xiii, 559; roots of unity, xi, 58—60; Schwarzian derivative and polyhedral functions, xi, 149; hypergeometric series, xi, 175; Legendre's theorem, xi, 339; Abelian functions, xi, 454; theory of numbers, xi, 602; theorem in simultaneous equations, xii, 39; fraction theorem, xii, 123—5; Weierstrassian and Jacobian elliptic functions, xii, 425—7; sextic equation, xii, 399—401, xiv, 493—9; sums of two series, xiii, 50; modular equations, xiii, 64; characteristic n and curves in space, xiii, 469; sextic resolvent equations, xiii, 473—9.

Jacobian: defined, ii, 319, iv, 607; of two quantics, ii, 517; theory of, and polynomial curves, vi, 506—8; the extended notion, vii, 134; of surfaces, vii, 134—6; of two curves, ix, 21; of quadric surfaces, x, 568; of six points, x, 613; rational transformation, xiii, 116; (see also Quantics).

Jefferson, T.: founder of Virginian mathematical professorship, xiii, 43.

Jeffery, H. M.: on quartic curves, xi, 408.

Jellott, J. H.: theorem of, on attractions, i, 388—91.

Jerrard, G. B.: quintics, iv, 391—4, v, 50—4, 77, 89; theory of equations, xii, 520.

Joachimsthal, F.: theory of covariants, ii, 177, 234; theorem of, ii, 521, xii, 594—5, 601, 629; normals of a conic, iv, 74—7; attraction of terminated straight line, vii, 33.

Jordán, C.: trees, x, 589, xi, 366; substitutions, xi, 455; theory of equations, xi, 520—1; uniform convergence, xiii, 343—4.

Kant, I.: cognition and space, xi, 431; negative magnitude, xi, 434.

Kellogg, P.: quaternions, xii, 475.

Kelvin, Lord: equipotential surfaces, i, 253—4; definite integral, i, 270; differentiation and evaluation of definite integrals, i, 557; relative motion, iv, 535, 593; inertia, iv, 565, 566, 593; attraction of terminated straight line, vii, 33; report on mathematical tables, ix, 461—99; distribution of electricity, xi, 6.

Kempe, A. B.: theory of groups, xii, 639.

Kenogram: the term, ix, 292—3.

Kepler, J.: problem of, iv, 521; and ellipse, xi, 447.

Key, T. H.: Professor of Mathematics, University of Virginia, xiii, 43.

Kinetics: of solid body, iv, 580—2; six coordinates of a line, vii, 89—95; of a plane, xi, 103—110, xiii, 505—16.

Kirkman, T. P.: schoolgirl problem, i, 483, 589; geometry of position, i, 550—6; sums of squares, ii, 49—52; double summation of factorial expression, iii, 250—3; autopolar polyhedra, iv, 85, 182; enumeration of polyhedra, v, 38; partitions of a polygon, xiii, 93.

Klein, P.: theory of distance, ii, 604, vii, xxxvi—vii; coordinates in non-Euclidean geometry, ii, 604—6; non-Euclidean geometry, viii, 409—13, xiii, 481; correspondence of homographies and rotations, x, 153; a system of quadric surfaces, x, 269; octahedral function, xi, 123; Schwarzian derivative and polyhedral functions, xi, 149, 151, 178, 183, 155; his classes of geometry, xi, 436; transformation of elliptic functions, xii, 29, 46, 496, 547.

Notes: of trees, iii, 243, ix, 429—60, xi, 365—7, xiii, 26—8; in topography, defined, iv, 104.

Königsberger, L.: transformation of elliptic functions, ix, 113, 140; theta functions, x, 499.

Kreisheilung: (cyclotomy), xi, 58, 86.

Kummer, E. E.: solution of equation $x^{m} - 1 = 0$, i, 564; wave surfaces, i, 587; composition of numbers, iv, 70—1, 78—9; Stiefer's quartic surface, v, 423; 16-nodal quartic surfaces, v, 431—7, vii, 126—7; x, 437; quartic surfaces, vii, 134, 176, 313, ix, 71; quintic surfaces, vii, 245, 247, 252; nodal quartic surfaces, vii, 264—297; surface of, viii, 69; prepotentials, ix, 364; mathematical tables, ix, 494; double theta functions and 16-nodal quartic surface, x, 158, 161; octic surface, x, 252; theta functions, x, 459; table of hexads, x, 506, 538, 552; hypergeometric series, xi, 17—25, 177; Schwarzian derivative and polyhedral functions, xi, 149; theory of numbers, xi, 456; systems of rays, xii, 573; differential equation of third order, xiii, 69—73.

Lacroix, S. F.: transformation of coordinates, iv, 557; imaginaries, xii, 468.

Lacunary Functions: xiii, 415—7.

Ladd, Christine: the Pascal hexagram, vi, 594.

Lagrange, J. L.: theorem of expansion, i, 40—2, 554, ii, 1—7, iii, 141; determinants, i, 64; variation of parameters, i, 243; dynamical differential equations, i, 279; elliptic functions, i, 366; distances of points, i, 581; attractions and multiple integrals, i, 581—2; caustics, ii, 353; problem of two fixed centres, iii, 104—19, iv, 527, 528—9, 589; sums of series, iii, 124; Mécanique Analytique, iii, 14—2.
LAGUERRE—LETTERS.

108

157—6, 201, 202; equations of motion, III, 158, 200, IX, 198—200; planetary theory, III, 159—61, 162—3, 291; variation of arbitrary constants in mechanical problems, III, 161—5, 200, 201; coefficient (a, b) of, III, 163; Hamilton's method of dynamics, III, 171—3, 200; disturbed elliptic motion, III, 571—2; equations of differences, IV, 249, 252; resolvents, IV, 309; central forces problem, IV, 519—20, 589; elliptic motion, IV, 521—2, 589; expansion of anomalies, IV, 522; spherical pendulum, IV, 532—3, 589; rotation of solid body, IV, 566, 599, 589; homotopy functions, v, 50; invariable plane, v, 142; invariants, VIII, XXX; demonstration of Taylor's theorem, VIII, 493—5, 519; virtual velocities, IX, 205—8; prime roots of unity, XI, 57; Schwarzian derivative, X, 149; theory of equations, XI, 455, 495—500, 514—5, 517, 520; envelopes, XI, 475; minimal surfaces, XI, 638; five points in space, XII, 581—3; theorem of expansion and partitions of polygon, XIII, 113; Waring's formula, XIII, 215—6; reciprocants, XIII, 366; Richelot's integral of Euler's equation, XIII, 526.

Lamb, H.: conformal representation, x, 290.

Lambdate, defined, II, 523, IV, 49, 133; of binary quartic, II, 550.

Lamp, Milner's: a differential equation, and construction of, XIII, 2—5.

Lancret, M. A.: curves of curvature, XII, 601.

Languages: Cayley's knowledge of, XII, xxii.

Laplace, P. S.: on Lagrange's theorem, I, 42, II, 7; determinants, I, 63; functions of, I, 397—401, 588; attraction of ellipsoids, I, 581, III, 53—65, 567; planetary theory, III, 159, 201; disturbed elliptic motion, III, 505, 516—11; on secular variation, III, 568; elliptic motion, IV, 524, 589; relative motion, IV, 534, 536, 589; motion of three bodies, IV, 540—1, 589; propotentials, IX, 393; finite differences, XII, 412.

Last Multiplier: IV, 530, 547, 551, 590.

Latin Squares: XII, 53—7.

Latitude: parametric, VII, 16, IX, 238.

Lattice: in theory of numbers, III, 40.

Law, The: Cayley's work at, VIII, XIII—XVI, XVI.

Lebesgue, V. A.: determinants, I, 63.

Lectures: delivered by Cayley, VIII, XVI—XVII, XIV.

Left-handed: circuits in root-limitation, IX, 22—3.

Lemniscate Function: XI, 65; and orthomorphosis, XIII, 191—205.

Letters: substitution groups for two to eight, XIII, 117—49.
LEVERRIER-Link-Work.

Lévy, M.: orthogonal surfaces, viii, 269, 569—70; Dupin's theorem, ix, 85.

Light, Polarized: MacCullagh's theorem, iv, 12—20.

Limaçon of Pascal: i, 480, xii, 477.

Lindemann, F.: non-Euclidian geometry, xiii, 481.

Linear: and onal relations in abstract geometry, vi, 463.

Linear Differential Equations: invariants of, xii, 393—9; general theory, xii, 384—402, 444—52; decomposition, xii, 403—7.

Linear Equations: and determinants, xi, 490; standard solutions of system of, xii, 19—21.

Linear Function: the term, xi, 492.

Linear Quantics (see Quantics).

Linear Transformations (see Quantics).

Linear Transformations: theory of, i, 80—94, 95—112, 117, 584, 585; Eisenstein's and Hesse's formulae, i, 113—6, 553; homogeneous functions of third order with three variables, i, 230—3; hyperdeterminants, i, 352—5, 577—9, 588, 589; theory of permutations, i, 423—4; simultaneous, of two homogeneous functions of second order, i, 428—31; theory of permanents, ii, 19—23; the term, iv, 594, 605; of elliptic integrals, ix, 615—21; of theta functions, xii, 58—5; Sylvester's work in, xiii, 46; (see also Covariants, Invariants, Quantics).

Line-geometry: and congruences, xiii, 228—30; (see also Coordinates, Lines).

Line-pairs: the term, vi, 206, 209, 210, 211; through given points and touching given conic, vi, 201, 244, 594.

Lines: on cubic surfaces, i, 445—56, viii, 371—6; harmonic relation of two, ii, 96—7; of cubic curve, ii, 382; satellite, ii, 383, v, 359; formulae, ii, 405—9; line, plane and point, defined, ii, 501—2; contour and slope, iv, 108—11, 609; cubic centres and conics, iv, 173—8, 179—81; geometry of, iv, 416—55, 616—8; involution, iv, 582, vi, 1—3; cubic centres of three lines and a line, v, 73—6; theorem of conic and triangle, v, 190—2; intersections of pencils of four and two, v, 484—6; formulae for intersections of line and conic, v, 500—4; circle and parabola, problem, v, 607; notation in Pascal's theorem, vi, 116—23; facultative, vi, 365—6, 450; dot-notation for, and planes and cubic surfaces, vi, 365—6, 373—49, 377—87; attraction of terminated straight, vii, 31—3; fire on cubic surface, vii, 177—8; homographic transformation, vii, 190—7; spherogram and isoparametric, vii, 467—8; isoeccentric and isospherogram, vii, 470—7; Cayley's work on six coordinates of, viii, xxxv; potentials of, ix, 275—90; formulae relating to right, x, 257—9; and points, x, 570; and conics, x, 602; contact with a surface, xi, 281—93; Mill on, xi, 432—3; non-Euclidian geometry, xi, 437, xiii, 480—504; evolution of theory of curves, xi, 450—1; singularities of curves, xi, 468; in Encyc. Brit., xi, 548, 571—2; equation of right, xi, 558—61; and surface, xi, 629; Mascheroni's geometry of the compass, xiv, 314—7; reciprocal, xiii, 58—9, 481; identity relating to six coordinates of a line, xiii, 76—8; and notion of plane curve of given order, xiii, 79—80; synzygetic relations, xiii, 224—7; of striiction, on skew surface, xiii, 232—7; system of in a plane, and their orthotomic circle, xiii, 346—7; and point, distance, xiii, 495—7; theory of two lines, xiii, 497—504; (see also Coordinates, Curvature, Geodesic Lines).

Line Systems: two-dimensional geometry, ii, 569—83.

Link: the term, v, 521, vii, 183, xiii, 506.

Linkage: the MacMahon, xiii, 265, 292, 293, 298—301.

Link-work: x, 407.
LIOUVILLE—MANNHEIM.

Liouville, J.: integration of differential equations, iii, 180, 191—2; equations of motion, iii, 185; Bour's memoir, iii, 190, 204; a definite integral, iv, 28—9; elliptic motion, iv, 522, 599; problem of two centres, iv, 530; motion of three bodies, iv, 541, 599; point moving in plane, iv, 542—6, 590; Abelian integrals, iv, 546, 590; on roots of equations, ix, 39; indefinite integration, ix, 590—3; geodesic curvature, xi, 323, 328.

Listing, J. B.: partitions of a close, v, 617, vi, 22; theorem of, viii, 540—7.

Locus: defined, iv, 458, vi, 458, 600; from two conics, vi, 27—34; in relation to triangle, vi, 53—64; and envelope in regard to triangle, vi, 72—82; in solido, problem and solution, vii, 599; in plano, problem and solution, vii, 599; the terms nodal, cuspidal, envelope-, tac-, viii, 533—4; in Ency. Brit., xi, 588.

Logarithms: theory of, iii, 208—13, 222—8; of imaginary quantities, vi, 14—8; L’inceto’s tables, viii, 95—6; calculation of log 2, xi, 70; origin, xi, 447; function in, xi, 526—7.

Logic: of characteristics, iii, 51—2; calculus of, viii, 65—6; Mill on, xi, 432—4; recent developments, xi, 458—9; geometry and algebra, xii, 459.

London Mathematical Society: Sylvester’s connexion with, xiii, 45.

Lottner, C. L. E.: motion of solid body, iv, 553, 590.

Lunar Theory: Hansen’s, iii, 13—24; disturbed elliptic motion, iii, 270—92; development of disturbing function, iii, 293—318, 319—31, vii, 511—27; tables, iii, 290—308; theorem of Jacobi, iii, 519—21; Plana’s, vii, 357—60, 361—6, 367—70, 371—4, 375—6; Delaunay’s l, g, h, k; vii, 528—33, 534; pair of differential equations in, vii, 535—6, 537—40; Newcomb’s work, ix, 179—80; note on, xiii, 206—9; (see also Elliptic Motion, Disturbed).

Luther, E.: theory of equations, xi, 520.

MacAulay, A.: quaternions and hydrodynamical equations, xiii, 8.

MacClintock, E.: quintics, iv, 609—16.

MacCullagh, J.: polar plane theorem, iv, 12—20; spherical conics, iv, 428; inertia, iv, 564—5, 588; rotation of solid body, iv, 574, 588.

MacDowell, J.: triangle and circle, v, 564.

Maclaurin, C.: cubic curves, i, 566; attraction of ellipsoids, iii, 27, 62, 155; pedal curves, v, 113—4.

MacMahon, P. A.: symmetric functions, ii, 600; seminvariants and symmetric functions, vii, 459, vii, 285—8, 290, 292, 293, 302; a differential equation, xii, 30—2; seminvariants, xi, 239, 254, 261, 273, 349, xii, 263; a differential operator, xii, 318; Waring’s formula for form of equation adopted by, xiii, 214; reciprocants and differential invariants, xiii, 399—404.

Magic Squares: x, 38.

Magnetism: Sabine’s work, xi, 430; Gauss’s work, xi, 544.

Maillard, M. S.: penultimate forms of curves, viii, 258; degenerate forms of curves, xi, 220; systems of curves, xi, 487.

Major Function in Abel’s theorem: xii, 111, 132—56.

Malfatti’s Problem: and system of equations, i, 465—70; Steiner’s extension, iii, 57—86, 593; Schellbach’s solution, iii, 44—7; system of equations connected with, ix, 546—50.

Malus, É. L.: systems of rays, xii, 573.

Mannheim, A.: epitrochoid, xiii, 81.
Manuscript of Cayley: facsimile of, on frontispiece, viii.
Maps: surface representation on plane, viii, 336—9; colouring, xi, 7—8; projections, xi, 448.
Mars: Newcomb on observations of, ix, 177.
Martin, A.: integration, x, 15, 29; probabilities, x, 600; Pellian equation, xiii, 467.
Mascheroni, L.: geometry of the compass, xii, 314—7.
Mâbre, F.: algebraic equations, iv, 171.
Mathematical Society of London: Sylvester's connexion with, xiii, 45.
Mathematical Tables (see Tables).
Mathematics: recent terminology, iv, 594—608; Mill on, xi, 432—4; relation to physics, xi, 444, 449; extent, xi, 449; Sylvester on its relation to music, xiii, 45.
Matrices: notation, ii, 183—8, xi, 243; constituents being linear functions of one variable, ii, 216—20; unity, ii, 477; theory of, ii, 475—96, 604, v, 438—48; which satisfy algebraic equation of own order, ii, 483; convertible, ii, 488; rectangular, ii, 494—6; in automorphic linear transformation, ii, 497—505; a linear system, ii, 604; for reduction of quintic to Jerrard's form, iv, 392; the term, iv, 594, 601—2; Bezoutic, iv, 607; Cayley's method of verification, vii, xxvii; Cayley the founder of theory, viii, xxxviii—iii; transformation of coordinates, xi, 136—42; of order two and the homographic function, xi, 292—7; quaternions, xii, 303, 311, 479; the equation, qQ—Qq' = 0, xii, 311—3; and theta function transformation, xii, 367—72, 386—9; quintic, xii, 376—80; Sylvester's theory of the corpus, xii, 47; involutant of two binary, xii, 74—5; six coordinates of a line, xiii, 76—8; note on a theorem in, xiii, 114; and sixty icosahedral substitutions, xiii, 522—7.
Maurice, F.: variation of arbitrary constants, iii, 166, 202.
Maxima and Minima: of functions of three variables, i, 228—9; theorem in, ix, 40—1; theory of déblais and remblais, xi, 417—20.
Maximum Indicator: vi, 83.
Maxwell, J. C.: contour lines, iv, 609; quartic and quintic surfaces, vii, 246, 252; on Cayley, viii, xx.
Mean Motion (see Motion).
Mechanical Construction: curve tracing, viii, 179—80, xiii, 515—6; of Cartesians, ix, 317, 535—6; of conformable figures, x, 406.
Mechanics: variation of arbitrary constants in, iii, 161—5, 200; construction of conformable figures, x, 406; integrator, xi, 52—4; and time, xi, 444; function in, xi, 522—3; curve tracing, xiii, 515—6.
Mehler, F. G.: attractions of polyhedra, ix, 266.
Memoirs: list of, on theoretical dynamics, iv, 584—593; (see also Ency. Brit. and the word desired).
Metageometry (see Hypergeometry, Prepotentials).
Method of Derivations: Arbogast's, ii, 257, iv, 265—71, 272—5, 609, xi, 55; binomial theorem and factorials, viii, 463—73.
Methyl: trees of, ix, 544—5.
Metrical Geometry: ii, 592.
Metrical Theory: pure analytical geometry, xi, 556—7; solid geometry, xi, 570.
Meunier, J. B. M. C.: theorem of, iii, 38.
Miller, W. J. C.: triangles, v, 566; conics, v, 582; negative pedals of ellipsoid and ellipse, x, 576—7; geometrical interpretation, x, 604.
MILNER—MULTIPLICATION.

Milner’s Lamp: differential equation and construction of, xiii, 3—5.

Minima (see Maxima and Minima).

Minimal Surfaces (see Surfaces).

Minor: the term, xi, 496.

Minor Function: in Abel’s theorem, xii, 111.

Mirrors: systems of rays, xii, 571—5.

Möbius, A. F.: geometry of position, i, 360; reciprocal figures, i, 415; developable from quintic curve, i, 500; torus on curved surface, i, 500; circular relation, iii, 118—9, ix, 612—7, xi, 188; cubic curves, iv, 120, xi, 479; in-and-circumscribed triangle, iv, 430—41; cubic curves and cones, v, 401, 551; opposite curves, v, 468; equilibrium of forces, v, 540—1; coordinates of a line, vii, 66, 93; multiple algebra, xii, 472, 473.

Models: Plücker’s, of quartic surfaces, vii, 298—302; Wiener’s, of cubic surface, viii, 306—84.

Modular: the term, xiii, 559.

Modular Equations: in elliptic functions, ix, 117—8, 126—37, 169—75, xii, 507—34; errors in Söhake’s paper, ix, 543; for cubic transformation, xii, 46; quintic transformation, xii, 416.

Modular Functions: system of symbols, iv, 484—9; ω, xiii, 338—41.

Modulus: of transformation, the term, iv, 603; table for any prime or composite, vi, 83—6.

Moment of Inertia: of solid body, iv, 478—80, 559—66.

Monge, G.: transformation of coordinates, iv, 557; theory of déblais and renblais, xi, 417—20; descriptive geometry, xi, 448—9; reciprocal poles, xi, 465; biographical notice, xi, 586—8; non-Euclidean plane geometry, xii, 221; differential equation of conic, xii, 393.

Monodromic: the term, xii, 432.

Monogenic Function: xii, 80, 537.

Monoidal Surfaces: and curves in space, v, 8, 552; and quintic curves in space, v, 24—30, 532, 553, 613.

Monotropic: the term, xii, 432.

Montucla, J. F.: on Wallis, xi, 642.

Moon: secular acceleration of mean motion, iii, 522—61, 568; (see also Lunar Theory, Solar Eclipse).

Morley, F.: topology of chessboard, x, 609—10; systems of circles and spheres, xiii, 13.

Motion: of solid body, i, 28—35, 583; secular acceleration of moon’s, iii, 522—61, 568; Lagrange’s equations of, ix, 198—209; on three-bar, ix, 551—50, 585, xiii, 505—16; Sylvester on recent discoveries in mechanical conversion, xiii, 44; (see also Dynamics, Elliptic Motion, Kinematics, Lunar Theory).

Moulton, J. F.: matrices, xi, 256.

Mountains: altitude, and roots of algebraic equation, xiii, 33—7.

Mourey, C. V.: imaginaries, xii, 468.

Mousetrap: the game of, iii, 8, x, 256—8.

Muir, T.: history of determinants, i, 581; problem of arrangements, x, 249—51; elimination, xiii, 545—7.

Multiform Series: defined, iv, 456.

Multilinear Operator of MacMahon: xiii, 399.

Multiple Algebra: on, xi, 446, xii, 60—71, 459—89; associative imaginaries, xii, 105—6.

Multiple Integrals: and attractions, i, 5—12, 13—8, 195—203, 294—6, 283—9, 438—44, 581, 586, ii, 35—9; demonstration of a theorem of Boole, i, 384—7, 588.

Multiple Sines: x, 1—2.

Multiple Theta-functions (see Theta-functions).

Multiplication: of elliptic functions, i, 534—9, 568—76, 589, ix, 138—47, xii, 507; of determinants,
xi. 495; of extraordinaries, xii, 461—2; complex, in elliptic functions, xii, 556—7; (see also Transformation).

Multiplier: Jacobi's theory of, i, 276, 279; theory of, in differential equations, x, 162—6; in elliptic integrals, x, 139.

Multiplier Equations: in elliptic functions, ix, 135—47, xii, 507.

Murdoch, P.: Newtoni Genesis Curvarum per Umbrae, v, 284, 288; curve classification, v, 354; cubic curves and cones, v, 402; the simplex cubical parabol, vi, 101.

Murphy, H.: four points in plane or space, vii, 585.

Murphy, R.: Legendre's coefficients, i, 376.

Music and Mathematics: Sylvester on, xiii, 45.

Nature: notice on Sylvester, xiii, 43—8.

Neg: the abbreviation in groups, xiii, 119.

Negative: the rule of signs, iv, 595—6, xi, 492.

Negative Deficiency: viii, 397.

Neptune: Newcomb's astronomical work, ix, 180—4.

Newcomb, S.: astronomical work of, ix, 176—84.

Newton, Sir I.: cubic curves, iv, 122; rectilinear motion, iv, 515, 580; central forces, iv, 515, 580; parabolas, v, 284; curve classification, v, 354, 364—6, 396—9; diameter, v, 362; cubic curves, v, 401, 551, xi, 464; conies, v, 562; forms of cubical parabolas, vi, 101; theorem as to roots of equations, x, 5; Principia, xi, 447—8; branches of curves, xi, 477; theory of equations, xi, 500, 502; roots of algebraic equation, xiii, 35; Sylvester's work at rule of, xiii, 46; tactions, xiii, 151—69; Newton-circle, the term, xiii, 152.

Newton-Fourier Theorem: imaginary roots, x, 405—6, xi, 143, xiii, 36; extension to complex variables, x, 405—6; theory of equations, xi, 114—21, 122.

Nexal: the term, viii, 73.

Nil: the term, xii, 66.

Nilfactum: and quantic, vi, 466.

Nilpotent: the term, xii, 61.

Nilvalent: the word, ix, 292.

Nine-point Circle: xiii, 517—9, 520—1, 548—51.

Nitrogen: tree of, ix, 430.

Nivellators: Sylvester's theory of, xiii, 47.

Nodal: the term, vii, 244.

Nodal Anallagmatic: the term, viii, 67.

Nodal Curves: of developable from quartic, v, 135—7; of cubic surface, vi, 450; centro-surface of ellipsoid, viii, 332—52.

Nodal Director: the term, v, 169—70.

Nodal Generator of Scrolls: v, 169—70, 170—81.

Nodal Isochronic: the term, vii, 473.

Nodal Locus: in singular solutions, viii, 533.

Nodal Quartic: defined, v, 10; mechanical description of bicircular, vii, 182—8; and hyperelliptic functions, xii, 196—208.

Nodal Quartic Surfaces (see Quartic Surfaces).

C. XIV.
NODAL—NUTATION.

Nodal Residue of Scrolls: v, 169—70, 181—3, 184, 187.
Nodal Total of Scrolls: v, 169—70, 183—9.
Node-couple: defined, ii, 29, iv, 22, xi, 227; curve, and plane, and torse, vi, 355, 582—5; torse, vi, 601.
Node-cusp: v, 265—6, 618.
Node-form: the term, vii, 274.
Nodes: the term, ii, 28, iv, 22, 27, 181, v, 295, xi, 468; elimination of, in three bodies, iv, 551, v, 23; number on quartic surface, vii, 133—81; quartic surface with twelve, xiii, 1—2.
Node-tangent: defined, ii, 29—32.
Node-triplet: the term, ii, 30.
Node-focus: of bicircular quartic, vi, 522—3, 523—6; the term, ix, 264.
Non-commutative Algebra (see Algebra).
Non-Euclidian Geometry, Memoir on: introduction, xiii, 480—1; geometrical notions, xiii, 481—9; point, line, and plane coordinates, general formulœ, xiii, 489—91; the absolute, xiii, 491—5; distance of a point and line, xiii, 495—7; distance of a plane and line, xiii, 497; theory of two lines, xiii, 497—504.
Non-Euclidian Geometry: viii, 409—13, xii, 220—38; (see also Hypergeometry).
Non-facultative Space: vi, 156.
Non-scalar Surfaces: quartic and quintic, vii, 245.
Non-unitarians: the term, xiii, 265.
Non-unitary Symmetric Functions: and seminvariants, xii, 239, 275, xiii, 267—98; tables, xii, 273—4.
Norm: and polyzonal curves, vi, 474, 573—5.
Normal Elementary Integral: of differential equation, xii, 396—7, 444.
Normals: in Ency. Brit., xi, 564—3; (see also Conics).
Normal Variables: in dynamics, ix, 111.
Notation: algebraic functions, ii, 185—8; matrices, ii, 185—8; quantities, ii, 223; for disturbing function compared, iii, 310—8; quantities and abstract geometry, vi, 464—6; differential equations, x, 95—7; for double theta functions, x, 497; theta functions, xi, 47—9, 243—5; umbral, xiii, 301—6.
Nöther, M.: curves in space, v, 613—7; rational transformation, vii, 255; deficiency of surfaces, viii, 395; sextic curve, ix, 504—7; classification of curves, xi, 451; Abelian function, xii, 149.
Novel-reading: at Cambridge by Cayley, viii, x—xi, xxiii.
Nullity: Sylvester's theory of, xiii, 47.
Number: time, and space, v, 292, 620, xi, 442—4; theory of equations, xi, 502.
Numbers: a theorem of Lejeune-Dirichlet's, ii, 47—8; tables of binary cubic forms, viii, 51—64; use of Bernoulli's, in analysis, ix, 259—62; arrangements of, x, 570; Sylvester and Hammond on Hamiltonian, xiii, 48; (see also Partition of Numbers).
Numbers, Theory of, in Ency. Brit.: xi, 592—616; ordinary and complex theories, xi, 592—3; ordinary theory, x, 594—609, 615—6; theory of forms, x, 604—9; complex theories, xi, 609—16.
Numbers, Theory of: Pollian equation, iv, 40—2, ix, 477—8, xi, 615, xiii, 430—67; composition of, iv, 70—1, 78—9; specimen table, vi, 83—6; \(x^n - 1 = 0 \), trisection and quartisection, xi, 84—96; \(x^n - 1 = 0 \), and quintisection, xi, 314—6, xii, 72—3; H. J. S. Smith on, xi, 429; imaginaries, xi, 444—5; evolution, xi, 455—6; Wilson's theorem, xii, 45; Sylvester on, xiii, 47; (see also Partition of Numbers).
Numerative Geometry: Schubert's, xi, 281—93.
Numerical Generating Function: x, 339, 408.
OBLIQUITY—ORTHOTOMIC.

Obliquity: the term, xiii, 234.
Observations (see Orbits, Planet's Orbit, Solar Eclipse).
Octacon: enumeration of polyhedra, y, 38-44.
Octad: the term, i, 586, vii, 133, 152, xii, 590.
Octadico-quartic Surfaces: x, 51.
Octahedron: theorem of eight points on a conic, viii, 92-4.
Octahedron: axial system, v, 531-9; automorphic function for, xi, 169, 179-83, 212-6.
Octaves: elliptic functions, i, 127, 586; imaginaries, i, 301.
Octave Surface: viii, 401-3.
Octic Function: and Abelian function, xi, 483.
Octics: and twisted cubics, xii, 310.
Octic Surface: on a sibi-reciprocal, x, 252-5; (see also Surfaces).
Octo-dianome: the term, vii, 134.
Octo-hexahedron: the term, x, 328.
Odd Branch of Curve: x, 36.
Off-planes: the term, vi, 330, 577, 583-5.
Obers, W.: orbits of asteroids, ix, 177.
Olivier, T.: conics inscribed in quadric surface, i, 557.
Omal: the word, vi, 194, 463. 467-9.
Omega Functions: the term, xi, 453; note on Smith's memoir, xiii, 558-9.
Omphal: the term, viii, 326.
Operandator: defined, iii, 242.
Operations: and substitutions, xiii, 530.
Operators: differential, vii, 8; and seminvariants, xiii, 322-32; MacMahon's multilinear, xiii, 399.
Optics: MacCullagh's theorem in polarized light, iv, 12-20; geometrical construction in, x, 28.
Orbits: Jacobi's canonical formula for disturbed motion, iii, 76-7; reduction to fixed plane, iii, 91-6; variation in plane of planet's, iii, 516-8; central forces problem, iv, 516-21; position of, in planetary theory, vii, 541-5; of asteroid, and Newcomb, ix, 176-7; Hamiltonian equations of central, x, 613; Sylvester's work at, xiii, 47; (see also Planetary Theory, Planet's Orbit).
Order: of system of equations, i, 457-61, 589; of quantities, defined, ii, 221; of curve, ii, 569-83, xi, 462; in abstract geometry, defined, vi, 463; of curve and surface, xi, 629.
Ordinary Point for Differential Equations: xiii, 394.
Oriani, B.: elliptic motion, iv, 474, iv, 528.
Orthocentre: the term, xiii, 550.
Orthogonal Surfaces and Curvature, Memoir on: viii, 292-315; introductory, viii, 292-3; curvature of surfaces, viii, 293-300; conormal correspondence of vicinal surfaces, viii, 301-8; condition that the two surfaces may belong to orthogonal system, viii, 309-11; family of surfaces, viii, 312-5.
Orthomorphic Transformation (see Orthomorphism).
Orthomorphism: of circle into parabola, v, 618, xii, 328-36; of a circle into itself, xiii, 20; general theory, xiii, 170-90; some problems, xiii, 191-205; note on theory, xiii, 418-24; (see also Conformal Representation).
Orthotomic: the term, ix, 13.
Orthotomic Circles: and polygonal curves, vi, 501; and Jacobians, vi, 568.
Orthotomic Curve: of a system of lines in a plane, xiii, 346-7.
Oscnode: defined, II, 28—32.
Oscular: the term, vi, 334, 361, 362.
Ostrogradsky, M. A.: dynamic equations, iii, 186, 203; transformation of differential equations, iv, 514; virtual velocities, ix, 207.
Outcrops: the term, viii, 326, 351.

Oval Chuck for Quartic Curves: viii, 151—5.
Ovals: of Descartes, i, 475; ii, 118, 336, iii, 66; and quartic curves, v, 468—70; twice-indented, x, 318; and functions, xi, 540; in Ency. Brit., xi, 549—51; roots of algebraic equations, xiii, 37; Sylvester's work at, xiii, 47; orthomorphosis, xiii, 185—6, 202.

Oxygen: trees of, ix, 427—60.

II: Wallis's investigation for, xiii, 22—5.
Painvin, L.: last multiplier, iv, 551, 590.
Parabola: inflexions of cubical divergent, v, 284—8; vi, 101—4; classification, v, 356, 395, vi, 101; line and circle, problem, v, 607; polyzonal curves, vi, 542; cubic curves, xi, 478; in Ency. Brit., xi, 548—51, 561—4; orthomorphosis of circle into, xii, 328—36; and epitrochoid, xiii, 86—7; orthomorphosis into circle, xiii, 421—2.
Parabolic Cyclide: ix, 73—8.
Paradox: the d'Alembert-Carnot geometrical, xii, 305—6.
Paraffins: trees of, ix, 427—60.
Parallel Curves: envelopes and surfaces, iv, 123—33, 152—7, 158—65; and evolutes, viii, 31—5; theory of, x, 200; the cire in solar eclipses, x, 311—5.
Parallels: and non-Euclidian geometry, xiii, 480—1, 481—9; the terms right and left, xiii, 488, 502.
Parallel Surfaces: of paraboloid, vii, 7; of ellipsoid, viii, 9, ix, 391; in Ency. Brit., x, 637—8.
Parametric Class and Order: of systems of cones, v, 552.
Parametric Latitude: vii, 16, ix, 238.
Parametric Relation: vi, 463—4; of triple orthogonal system, viii, 292—315.
Parazome: the word, vi, 477.
Partial Differential Equations: integral of, iii, 166; system of, viii, 517—8; Jacobi's, in transformation of elliptic functions, xii, 530—3; on a, xiii, 358—61.
Particle: under central forces, x, 575; (see also Dynamics).
Partition of Numbers: ii, 218, 235—49, v, 48; and quantities, ii, 265; supplementary researches, ii, 506—12; a problem in, iii, 247—9; tactical, v, 294, xi, 443.
Partitions: conjugate, due to Ferrers, ii, 419; formula, in, iii, 36—7; problem of double, iv, 166—70; of a close, v, 62—5, 617; problems, vii, 575, x, 611, xi, 61—2; tables, ix, 480—3, x1, 357—64; theorems in trigonometry and, x, 16; in Ency. Brit., xi, 589—91; note on a partition-series, xii, 217—9; non-unitary partition, xii, 273—4; Sylvester's constructive theory of, xiii, 47; of a polygon, xiii, 93—113; and semi-invariants, xiii, 299.
Pascal, B.: hexagram of, i, 356; limaçon of, i, 480; some theorems of geometry of position, i, 550—6; lines of, i, 551, 588; curves, xi, 447; inscribed hexagon, xi, 556.
Pascal's Theorem: intersection of curves, i, 25—7; demonstration, i, 43—5; Chasles' form of, i, 45; on, i, 322—8, 414, vi, 129—31, 594; generalized, v, 4; notation of points and lines, vi, 116—22, 594.
Peacock, G.: multiple algebra, xii, 460, 467, 469, 470—1.
Peaucellier, A.: mechanical construction of Cartesian by his cell, ix, 317; cell of, and scalene transformation, ix, 527—34; Sylvester on his discoveries, xiii, 44.

Peirce, B.: orbit of Neptune and Uranus, ix, 180, 182; multiple algebra, xi, 457—8, xii, 60—71; associative algebras, xii, 106, 458, 465; imaginaries, xii, 306.

Pellian Equation: iv, 40—2; tables, ix, 477—80; and theory of numbers, xi, 615; report of committee on, xiii, 430—77.

Pencils: defined, ii, 577; homography of, ii, 578; intersections of four- and two- lined, v, 484—6; of six lines and cubic curves, vi, 105—15, 593—4.

Peninvariants: and semi-invariants, iv, 241; the term, iv, 606.

Pentagon: a theorem relating to, i, 318—9; Gauss’s Pentagramma Mirificum, vii, 37—8; Schröter’s construction of regular, xii, 47; (see also Polygons).

Pentagraph: illustrating a function, xi, 440; curve tracing, xiii, 515—6.

Penultimate Quartic Curve: viii, 526—8.

Penumbral Curve (see Solar Eclipse).

Periodic Functions: the term, xi, 529; (see also Doubly Periodic Functions).

Periods: of elliptic integrals, ix, 618; of theta functions, x, 467—9.

Permissive Points: in differential equations, xii, 434—41.

Permutations: theory of, ii, 16—26, 27; defined, ii, 17, iv, 394, 596, 600; Sylvester on, ii, 26—7.

Permutations: theory of, i, 423—4; idea of group, ii, 124; problem of geometric, v, 493—4; combinatorial, v, 495—7; colours on faces of polyhedra, v, 539; (see also Arrangements, Combinatory Analysis).

Perpendicular: in non-Euclidian geometry, xiii, 480—1, 481—9.

Perpendicularity: and imaginaries, xii, 466—72.

Perpendiculars: and semi-invariants, xii, 250—7, xiii, 266; sextic, xii, 257—62; reducible semi-invariants, xiii, 308—13; Strohan’s theory of, xiii, 314—8.

Perspective: of triangles, iii, 5; five points in a plane, v, 480—3; theory, xi, 442.

Pfaffian Equations: Natani and Clebsch, iv, 515.

Pfaffians: and skew determinants, i, 411, ii, 203; the term, i, 589, ii, 19, iv, 594, 600; and differential equations, x, 96—7, 106.

Physics: relation to mathematics, xi, 444, 449; (see also Dynamics, Electricity, Light).

Picard, É.: integral calculus, xii, 408—11.

Pinch-planes: the term, vi, 330, 335, 583—5, x, 53—6.

Pinch-points: the term, vi, 123, 330, 335, 582—5, x, 53—6, xi, 227.

Pippian: defined, i, 586, ii, 381, 397—400, 400—3; and Hessian, ii, 383—95; geometrical definition, ii, 416.

Pirie, B.: inertia, iv, 564.

Planar Developables: the term, I, 505.

Planarity: of developables, v, 517.

Plane Curves (see Curves, Plane).

Plane-Integral: prepotential, ix, 337—43.

Plane of Orbit: variation in, iii, 516—8.

Planes: diametral, of quadric surface, t, 255—8; point and line defined, t, 561—2; geometry of two dimensions, t, 569—83; MacCullagh's theorem of polar, iv, 12—20; lines and dots of cubic surfaces, vi, 365—6, 373—449; rational transformation, vii, 197—213, 216—9; quadratic transformation, vii, 213—6; also lineo-linear, vii, 213—6; determined by point and three lines, vii, 571; foci-nodal, of a surface, x, 202—4; kinematics of, xi, 103—10, xiii, 505—16; in Ency. Brit., xi, 571—2; osculating and normal, x, 579—80; and surface, x, 629; non-Euclidian geometry, xiii, 481—504; and line distance, xiii, 497.

Planetary Theory: Desboves', iii, 185, 203; development of disturbing function, III, 319—43, vii, 511—27; variation in plane of orbit, iii, 516—8, vii, 541—5; theorem of Jacobi, iii, 519—21; Newcomb's work, ix, 180—4.

Planet's Orbit from Three Observations: vii, 384—6, 400—78; introductory, vii, 400—1; the general theory, vii, 401—6; determination of orbit from given trivector, vii, 406—12; time formula, Lambert's equation, vii, 412—5; formulae for transformation between two sets of rectangular axes, vii, 415—7; intersection of orbit plane by single ray, vii, 417—26; trivector and orbit, vii, 426—8; special symmetrical system of three rays, vii, 428—9; Planogram No. 1, meridian 90°—270°, vii, 429, 430—40; No. 2, meridian 0°—180°, vii, 429, 441—51; No. 3, orbit-pole at point A, vii, 429, 452—4; No. 4, orbit-pole in elliptic, vii, 429, 455—9; No. 5, orbit-pole on a separator, vii, 429, 459—67; spherogram and isoparametric lines, vii, 467—8; c-spherogram and isocentric lines, vii, 468—70; time-spherogram and isochronic lines, vii, 470—7.

Plates (see Diagrams, also Tables).

Plato: and geometry, xi, 446.

Playfair, J.: on twelfth axiom of Euclid, xi, 435.

Plerogram: the term, ix, 202.

Plexus: the term, iv, 603, vi, 458; Sylvester's term, xiii, 46.

Plücker, J.: theory of algebraic curves, i, 53, 54; curves and developables, t, 207, 208, 210, 586—7; involution, t, 259, 261; elimination, and theory of curves, t, 344; geometry of position, t, 356, 553—6; geometrical reciprocity, t, 359; reciprocal figures, t, 418; quadric surfaces, t, 421; cubic surfaces, t, 446; transformation of curves, t, 478; singularities of plane curves, t, 586, v, 520—2, 619, xi, 459; cubic curves and cones, iv, 173—8; double tangents, iv, 186; points of six-pointic contact on cubic, iv, 207; cubic curves, iv, 495, 617, v, 402; line geometry, iv, 616—8; hyperboloid coordinates, v, 72; node-cusp, v, 255—6; curve classification, v, 354—400; numbers for singularities of plane curves, v, 424, 476, 517; higher singularities of plane curves, v, 426, 619; pencil intersections, v, 484; numbers of, vi, 68, viii, 41—5, xi, 460—73; species of cubical parabola, vi, 101; focus, vi, 515, xi, 481; six coordinates of a line, vii, 66; quartic surface models, vii, 298—302; construction of a conic, vii, 592; hypergeometry, viii, xxy; theory of curve and torse, viii, 74, 75—6, 80—1; theory of curves, xi, 467; envelopes, xi, 473—6; note on equations of, xiii, 536.

Pohlke, K.: theorem in axonometry, ix, 508.

Poincaré, L.: polygons and polyhedra, iv, 81—5, 86—7, 669; inertia, iv, 563, 590—1; rotation of solid body, iv, 571—3, 577, 591; kinematics of solid body, iv, 590, 591, 591.

Points: of cubic curve, ii, 382; satellite, ii, 383; formula, ii, 405—9; theorems, ii, 409—12; plane and line defined, ii, 561—2; and incert of a curve, ii, 574; lattice, iii, 40; distances of, from triangle and formula, iv, 510—2; tritom, v, 138; the term polar of, v, 579; and abstract
geometry, of, 458; potential of, 1x, 278—80; singularities of curves, xi, 468; coordinates of, as functions of parameter, xii, 290—1; and line distance, xiii, 485—7; two-way, xiii, 507; forwards, and back-backwards, xiii, 510.

Point-pairs: the term, ii, 564—5, vi, 292, 206—7, 208, 210, 269, 594—5; degenerate forms of curves, xi, 218.

Points: distances of, i, 1—4, 581; some theorems in geometry of position, i, 317—28; of inflexion, i, 345—9, 354; of osculation, i, 349—51; harmonic relation of two, ii, 96—7; of esser, defined, iv, 130; critical defined, iv, 130; five in a plane, vi, 480—3; correspondence on plane curve of, v, 542—5; and circle, problem, v, 560; correspondence of two on a curve, vi, 9—13, 294—8, vii, 39; notation of, in Pascal's theorem, vi, 116—23; abstract geometry, vi, 463; consecutive, vi, 467—9; system of 16, and polyzomal curves, vi, 501—3, 504—5; problem of random, vii, 585; problem and solution of four in plane or space, vii, 585; four and conic, vii, 587; on particular sextic curve, ix, 504—7; branch and cross, x, 317; and lines, problem and solution, x, 570; on a circle, function of, xi, 130; double and pinch-, xi, 227; Mill on, xi, 432—3; representation on plane, xi, 442; evolution theory of curves, xi, 450—1; at infinity, xi, 464; relation between the distance of five in space, xii, 581—3; analytical formula in regard to octad of, xii, 590—3; Sylvester's facultative, xiii, 46; non-existence of a special group, xiii, 212; syzygetic relations, xiii, 224—7; non-Euclidian geometry, xiii, 480—504; coordinates of, and non-Euclidian geometry, xiii, 489—91; (see also Orthomorphosis).

Point-systems: and one-dimensional geometry, ii, 563—9, 583—86; and two-dimensional geometry, ii, 569—83, 586—92.

Poisson, S. D.: attraction of ellipsoids, iii, 155; planetary theory, iii, 159, 201; variation of arbitrary constants in mechanical problems, iii, 163—5, 200, 201, 202; coefficient (α, β) of, iii, 165; Hamilton's method of dynamics, iii, 173—4, 290; integration of differential equations, iii, 180; distribution of electricity, iv, 92—5, 100—7; x, 299, xi, 1; elliptic motion, iv, 522; relative motion, iv, 535, 591; motion of projectile, iv, 541, 591; inertia, iv, 563, 591; rotation of solid body, iv, 566, 569, 573, 591; rotation round fixed point, iv, 582, 591; motion of solid body, iv, 583, 591; attraction of ellipsoidal shell, ix, 302; Jacobi's theorem, x, 108—9, 110—3.

Polar: of point, v, 570, x, 54, xi, 465.

Polar Conjugate: of curve of third class, ii, 383.

Polar Reciprocal: i, 230, 378, 416.

Polarization: MacCullagh's theorem, iv, 12—20.

Poles: conjugate, of cubic curve, ii, 382—5; two-dimensional geometry, ii, 579—83, 586—92; the term, xi, 465.

Pollock, Sir F.: on circumscribed triangle, iii, 29—34.

Poliod Curve: iv, 571—2.

Polya: triangle-faced, and enumeration of polyhedra, v, 38—44.

Polygons: in-and-circumscribed, ii, 87—9, 91—2, 138—44, 145—9, iv, 292—308, 335—41, v, 21—2, viii, 14—21, 212; partitions of close, v, 62—5, 617; and triangles, problem, v, 589; potential of, ix, 266—50; automorphic function for, xi, 169, 170—83, 212—6; partitions of, xiii, 92—113.

Polyhedra: Poinsot's four new regular solids, iv, 81—5, 86—7, 609; the problem of, iv, 182—5, 609; autopolar, iv, 185; enumeration of, and triangle-faced polyhedra, v, 38—40; partitions of close, vi, 62—5, 617; axial properties, v, 529—39; potential of, ix, 266—80.

Polyhedral Functions (see Hypergeometric Series, Schwarzian Derivative).

Polyzomal Curves, Memoir on: vi, 470—576; vii, 115; introductory, vi, 470—2; Part I, polyzomal curves in general, vi, 473—97; definitions and preliminary remarks, vi, 473—4; the branches, vi, 474—6; points common to two branches, vi, 476—8; singularities of a v zomal, vi, 478—9; zonals with common point or points, vi, 479—81; depression of order of v zomal curve from
ideal factor of branch or branches, vi, 481—3; the trizonal and tetrazonal, vi, 485; intersection of two \(\nu \) zomals having same zonal curve, vi, 486—7; theorem of decomposition of tetrazonal, vi, 487—9; application to trizonal, vi, 489—94; tetrazonal curve, vi, 494; variable zonal of trizonal curve, resumed, vi, 494—7; Part II, subsidiary investigations, vi, 497—515; preliminary remarks, vi, 497—8; circular points at infinity; rectangular and circular coordinates, vi, 498—9; antipoints; definition and fundamental properties, vi, 499—500; antipoints of circle, vi, 500; antipoints and pair of orthotomic circles, vi, 500; forms of equation of circle, vi, 501; system of 16 points, vi, 501—3; property in regard to four confocal conics, vi, 508—4; system of sixteen points, the axial case, vi, 504—5; involution of four circles, vi, 505—8; loci connected with foregoing, vi, 508—9; formule of two sets each of four conyclic points, vi, 509—11; ditto further properties, vi, 512—5; Part III, theory of foci, vi, 515—34; the general theory, vi, 515—7; foci of conics, vi, 517—9; variable zonal applied to conic, vi, 519—21; foci of circular cubic and bicircular quartic, vi, 521—2; centre of circular cubic, and nodo-foci, etc., of bicircular quartic, vi, 522—3; circular cubic and bicircular quartic; symmetrical case, vi, 523; ditto, singular fomus, vi, 523—6; analytical theory for circular cubic, vi, 526—8; ditto, for bicircular quartic, vi, 528—30; property that points of contact of tangents from pair of conyclic foci lie in a circle, vi, 530—34; Part IV, trizonal and tetrazonal curves where the zomals are circles, vi, 534—66; the trizonal curve-tangents at \(I, J \), etc., vi, 534—7; foci of conic represented by equation in areal coordinates, vi, 537; theorem of variable zonal, vi, 539—41; relation between conic and circle, vi, 541—2; case of double contact, Casey's equation in problem of tactions, vi, 543; intersections of conic and orthotomic circle on set of four conyclic foci, vi, 543—4; construction of symmetrical curve, vi, 544—6; focal forume for general curve, vi, 547; circular cubic, vi, 548—9; focal formule for symmetrical curve, vi, 549; symmetrical circular cubic, vi, 549—50; general ditto, vi, 550—3; transformation to new set of conyclic foci, vi, 553; trizonal curve, decomposable or indecomposable, vi, 553—4; cases of indecomposable, vi, 554—5; ditto, centres being in line, vi, 555—6; the decomposable curve, vi, 556—7; ditto, centres not in a line, vi, 557—61; ditto, centres in a line, vi, 561—5; ditto, transformation to a different set of conyclic foci, vi, 565—6; theory of Jacobian, vi, 566—8; Casey's theorem for circle touching three given circles, vi, 568—73; a norm when the centres are in line, vi, 573—5; trizonal curves with cusps or two nodes, vi, 575—6.

Poncelet, J. V.: harmonic relations, ii, 96; porism of in-and-circumscribed triangle, iii, 80—5; rectangular hyperbola, iii, 254; in-and-circumscribed polygon, vi, 21—2; reciprocal polars, xi, 466.

Pontécoulant, G. de; *Système du Monde*, iii, 309—10; *Lunar Theory*, iii, 521, vii, 357.

Porism: homographic, defined, iii, 74, 84; allographic defined, iii, 75, 85; of polygon and correspondence, ix, 94.

Portraits of Cayley: frontispiece to vols. vi, vii, xi.

Pos: the abbreviation in groups, xiii, 119.

Positive: the rule of signs, iv, 395—6, xi, 492.

Postulandum of Curve: the term, i, 533, vii, 140, xii, 501; and capacity, xiii, 115.

Postulation: the term, i, 583, vii, 140, 225, viii, 394; of curve, xii, 501.

Potential: and attractions, i, 195.

Potentials: of polygons and polyhedra, ix, 268—80; of ellipse and circle, ix, 281—301; Smith's Prize question on, xi, 261—4.

Potenzkreis of Steiner: iii, 113.

Power-enders: the term, xiii, 267, 270, 295; and reciprocants, xiii, 333.

Powers: successive, of homographic function, x, 305—6, 307—9; of roots of algebraical equations, xii, 33—4.

Prepotentials, Memoir on: ix, 316—423; introductory, ix, 318—21; prepotential plane, theorem A, ix, 319, 337—43; potential surface, theorem C, ix, 320, 343—6; potential solid, theorem D, ix, 320, 346—7; the prepotential surface integral, ix, 321—30; its continuity, ix, 330—4; potential solid integral, ix, 334—7; examples of foregoing, ix, 347—50; surface and volume of sphere, ix, 351—2; integral, ix, 352—9; prepotentials of uniform spherical shell and solid sphere, ix, 359—79; examples, theorem A, ix, 379—93; Green's integration of prepotential equation, ix, 393—404; examples, theorem C, ix, 404—7; examples, theorem D, ix, 407—8; prepotentials of homaloids, ix, 408—9; Gauss-Jacobi theory of epispheric integrals, ix, 410—7; methods of Lejeune-Dirichlet and Boole, ix, 417—23.

Prepotentials: Smith's Prize question, xi, 261.

Presidential Address: to British Association, xi, 429—59.

Prime Numbers: B.A. report on tables of, ix, 462—70.

Prt: the abbreviation for tortuous curves, xiii, 253.

Principal System of Sextic Curve: vii, 236—8.

Principia: solution of problem, Book I, Sect. V, Lemma xxvii, vii, 30; (see also Newton).

Principiants: and reciprocants, xiii, 388—98.

Probabilities: questions in theory of, ii, 103—4, 594—8, v, 80—5, x, 558, 600—1, 614.

Problems: mechanical, iii, 78—9; a class of dynamical, continuous impact, iv, 7—11; (see also Dynamics, Smith's Prize Papers, Three Bodies).

Problems and Solutions from the Educational Times: v, 560—612; table of contents, v, 612; vii, 546—607; table of contents, vii, 607—8; x, 566—614; table of contents, x, 615—6; (see also Smith's Prize Papers).

Product-theorem: for theta functions, x, 464, 474, 509—46.

Progress of Theoretical Dynamics (see Dynamics).

Prohessians: defined, v, 257; and developables, v, 513—4.

Prohibitive Points: in differential equations, xii, 434—41.

Projectile: effect of resisting medium, iv, 541.

Projection: stereographic, of spherical conic, v, 106—9; of ellipsoid, v, 487—8; plane representation of solid figure, vii, 26—30; stereographic, vii, 397—9, xi, 157—9, 509; blank, vii, 482; of surface on plane, vii, 535—9; Mercator's, viii, 557; Mercator's, of skew hyperboloid of revolution, ix, 237—40; a problem of, ix, 568—18; map, xi, 448.

Rolutions: Sylvester's Astronomical, xiii, 47.

Proyectant: defined, ii, 514.

Provector: defined, ii, 514.

Pseudosphere: the term, xii, 220.

Ptolemy: stereographic projection, xi, 448.

Puiseux, V.: algebraic functions, iii, 225; spherical pendulum, iv, 533, 591; motion of a body, iv, 583, 591.

Pyramid: (see Polygons, Polyhedra).

Quadrangle: in-and-circumscribed, iv, 397—8; differential relation between sides, x, 33—5.

Quadratic Equation: roots, v, 190—1; and geometrical interpretation, xi, 258—60.

Quadratic Form: composition, i, 532; transformation of, into itself, ii, 192—201, 215; tables, v, 141—56, ix, 480—3, 486—93.

C. XIV.
QUADRATIC—QUANTICS.

Quadratic Residues: Eisenstein's geometrical proof, iii, 39—43.
Quadratic Transformation of Binary Form: viii, 338—400; (see also Transformation).
Quadratics: resultant of three ternary, and invariant of biternary, iv, 349—58.
Quadratic Cones: of six given points, v, 4—6; through given points, x, 575.
Quadratic Curves: v, 70—2.
Quadratic Equations: transformation of two, i, 428—31, iii, 129—31; automorphic linear transformation of, ii, 497—505; solution by radicals, x, 9; two related, xi, 37.
Quadratic Integral: due to Aronhold, xii, 162—9.
Quadricon: the term, vi, 334, 555, vii, 264.
Quadriconvariant: of quantic, ii, 520; or Hessian, ii, 543; the term, iv, 606.
Quadrises: through nine points, i, 425—7; developable from two, i, 486—95; homographic transformation into itself, ii, 105—12, 117, 133—7; theorem on surfaces, iii, 115—7; equation of differences for, iv, 242; the term, iv, 604; sections of, v, 133—4; through three lines, vii, 177; in hyper-dimensional space, ix, 79—83; covariants of, ix, 537—42; envelope of family of, x, 589; correspondence of confocal Cartesians with right line of a hyperboloid, xii, 587—9; (see also Binary Quadrices).
Quadratic Seminvariants: generating functions of, xiii, 306.
Quadratic Surfaces: n-dimensional geometry, i, 62; diametral planes of, i, 255—8; centres of similitude, i, 329—31; note, i, 421—2, 589; abstract of memoir by Hesse, i, 425—7; conics inscribed in a, i, 557—63; envelope of certain, viii, 48—50; inversion, viii, 67—71; problem, and hypothethical theorems, viii, 556; and four-dimensional space, ix, 246—9; a system of, x, 269; Jacobian of, x, 565; in Ency. Brit., xi, 576—9, 632; twisted cubics on, xii, 307—10; foci of, xiii, 51—4; reciprocal lines, xiii, 58—9; (see also Geodesic Lines).
Quadratic Transformation: between planes, vii, 213—5, 219—21, xii, 100—1; (see also Transformation).
Quadratic-Cubic Curves in Space: v, 16.
Quadricerquadratic: the word, vii, 51.
Quadriforms: the term, ix, 426.
Quadrilateral: and ellipse, v, 664; inscribed in bicircular quartic, x, 231—5; inscribable in circle, x, 578.
Quadrinvariant: of binary quartic, first occurrence, i, 93; of quantic, ii, 516; the term, iv, 606; of quadricadric function, xiii, 67—8.
Quadrquadric: the term and kinds, v, 10, vii, 99.
Quadrquadric Curves: in space, v, 17; on, v, 282; sextic torse for caspidal edge having, x, 68—72; Abel's theorem, xii, 156—9, 292—8, 321—5; and elliptic functions, xii, 292—8, 321—5.
Quadrquadric Function: two invariants of, xiii, 67—8.
Quadrquadric Transformation: between spaces, vii, 229—30; (see also Transformation).
Quadrupadial: the term, vii, 65.
Quantics, Second Memoir: ii, 250—75; numerical tables, ii, 276—81.
Quantics, Third Memoir: ii, 310—35.
Quantics, Fourth Memoir: ii, 533—6; definitions, ii, 513—5; covariants and invariants of degrees, two, three, four, ii, 515—30; calculation of discriminant, ii, 520—2; the catalecticant, lambdac, and canonicant, ii, 529—3; bezontians, cobezonian, ii, 524—6.
Quantics, Fifth Memoir: ii, 527—57, 604—6; the single quadric, ii, 527—9; two or more, and theories of harmonic relation and involution, ii, 529—49; cubics, ii, 540—5; quartics, ii, 545—6.
Quantics, Sixth Memoir: analytical theory of binary and ternary, ii, 361—83; general theory of distance, ii, 583—92; its style, viii, xxvii.
Quantics, Seventh Memoir: chiefly ternary cubics, iv, 325—41; tables, iv, 333—41.
Quantics, Eighth Memoir: vi, 147—90; introductory, iv, 147—8; binary quintic, covariants and syzygies of degree 6, vi, 148—53; formulae for canonical form, vi, 153—4; 18-thic invariant, vi,
QUANTICS—QUARTIC.

154—6; character of equation, auxiliaries, facultative and non-facultative space, vi, 136—8; application to quartic equation, vi, 158—61; characters of quintic equation, vi, 161—5; Tschirnhausen’s transformation, vi, 165—9; Hermite’s application of Tschirnhausen’s transformation to quintic, vi, 170; nodal cubic, vi, 171—4; Hermite’s criteria, vi, 174—6; his canonical form of quintic, vi, 177—83; imaginary linear transformations, vi, 183—6; application to auxiliaries of quintic, vi, 186—7; theorem of binary quintic, vi, 187—90; the binary quintic and sextic, vi, 190.

Quantics, Ninth Memoir: vii, 334—53, ix, 537—42; introductory, vii, 334—5; theory of number of irreducible covariants, vii, 336—7; new formulæ for number of asyzygetic covariants, vii, 337—40; the 23 fundamental covariants, vii, 341—8; tables, vii, 341—6; Gordan’s proof for the complete system of 23, and concomitants of quintic, vii, 348—53.

Quantics, Tenth Memoir: x, 339—400; introductory, x, 339—40; numerical and real generating functions, x, 341—8; table 96, x, 349—53; theory of the canonical form, x, 355—62; table 97, x, 362—9; table 98, x, 370—6; derivatives and tables, x, 377—94; numerical generating functions, x, g, p, f, of a sextic, x, 394—6; table, x, 397—400.

Quantities: defined, ii, 221, iv, 593, 604; resultant of, ii, 320; discriminants, ii, 320; notation of abstract geometry, vi, 464—6; and nillactus, vi, 466; character of the ten memoirs, viii, xxx—xxxi; transformable into each other, viii, 385—7; eliminant of two, xi, 100—2; Sylvester’s work in, xiii, 47; syzygetic relations among the powers of linear, xiii, 224—7; and seminvariants, xiii, 363; (see also Binary Quantities, Quadratics).

Quartic Curves: transformation, i, 476—80, 589; special family of, i, 496—9; bitangents of, iv, 342—8, vii, 123—4, x, 244—8, xi, 221—3, 474; cuspidal defined, v, 10; in space, v, 11—5; and ovals, v, 468—70; triangle in-and-circumscribed to a, v, 489—92; with three double points, v, 550, 553; in connexion with cubic and quintic, problem, vi, 589; problem, v, 586; and sextic torse, vii, 99—100; tricuspidal, problem, vii, 589; mechanical description, viii, 151—5; a penultimate, viii, 526—8; construction of bicircular, ix, 13—5; and functions of a single parameter, ix, 315—7; with two odd branches, x, 36—7; bicircular, x, 223—42; triple theta functions, x, 446—54; problem and solution, x, 582—6; trinodal, problem, x, 602; singular tangents of, problem, x, 603; degenerate, xi, 220; with cusps at infinity, xi, 408; forms and classification, xi, 480; circular, xi, 481; ground curve in Abel’s theorem, xii, 38, 109—216; bitangents of plane, xii, 74—94; twisted, xii, 428—31; (see also Bicircular, Binary, Bidual and Nodal Quadratics).

Quartic Developables: and developable surfaces, v, 268—71; reciprocation of, v, 505—10.

Quartic Equations: conditions for systems of equal roots, ii, 467—8; evolution, ii, 547; Tschirnhausen’s transformation, iv, 368—74, v, 449; Sturmian constants, iv, 473—7; nodal curve of developable from, v, 135—7; and quantities, vi, 158—61; solution of $aU+6bH=0$, vii, 128—9; roots, vii, 551, x, 575; solution by radicals, x, 10.

Quartic Matrix: Hermite’s, xi, 367—72.

Quartics: canonical form, ii, 548; equation of differences for, iv, 243, 279; the term, iv, 604; roots of, problem, v, 610; conditions for existence of systems of equal roots, vi, 300—12; and three cubics, problem, vii, 546; reality of roots, problem, x, 608.

Quartic Scroll (see Scrolls).

Quartic Seminvariants: xiii, 29; generating functions, xiii, 306; and perpetuants, xiii, 316.

Quartic Surfaces, First Memoir: viii, 133—81, 609—10; introductory, vii, 133—4; Jacobian surfaces, vii, 134—6; surface by equating to zero a symmetrical determinant, vii, 136—7; surfaces $F(P, Q)=0$, etc., vii, 138; nodes of quartic surface, vii, 138—40; number of constants contained in a surface, vii, 140—1; general theory of quartic surface with given nodes, vii, 141—4; Jacobian surface of six given points, vii, 144—5; ditto of seven, or an octad of points, vii, 145—8; the dianodal surface, vii, 148—52; octad surfaces with 9 or 10 nodes, vii, 152—3; dianodemes with 9 or 10 nodes, vii, 155; dianodal curve of 8 points, vii, 155—6; ten nodes, vii, 156; dianodal
QUARTIC—QUINTICS.

124

centres of 9 points, vii, 156; result as to dihanomes, vii, 156; the symmetroid, (lineo-linear correspondence of quartic surfaces), vii, 157—9; ditto and Jacobian, vii, 160—3; symmetroid with given nodes, vii, 163—6, 259; Jacobian with given lines, vii, 167; correspondence on the Jacobian, vii, 168—70; further investigations as to Jacobian, vii, 171—5; persymmetrical case: Hessian of a cubic, vii, 175; quartics with 11 or more nodes, vii, 176—7; quadric surface through three given lines, vii, 177; condition that five given lines may lie in a cubic surface, vii, 177—8; condition that seven given lines may lie in a quartic, vii, 178; Jacobian of 6 points, vii, 178—9; locus of vertex of quadric cone which touches each of six given lines, vii, 180—1.

Quartic Surfaces: on, v, 66—9; Steiner, v, 421—3, ix, 1—2; 16-nodal, v, 431—7, vii, 126—7, x, 157—65, 180—3, 604, xii, 95—7; note on, v, 465—67; recent researches, vii, 244—52; Plücker’s models, vii, 298—302; some special, vii, 304—13, viii, 2—11, 25—8; surface and sphere, problem, vii, 589; section of surface, problem, vii, 593; penultimate forms of, vii, 262—3; symmetrical determinant=0, x, 50—6; 12-nodal, x, 60—2, xii, 1—2; Hessian of, x, 274—7; tetrahedroid as 16-nodal, x, 437—40; equation of, x, 609; in Encyc. Brit., xi, 633—4; (see also Cycloide).

Quartic Syzygy: and elliptic integrals, ii, 191, iv, 68—9, 609.

Quartic Transformation: of elliptic functions, ix, 103—6.

Quartic invariants: of quartic, ii, 516, 520.

Quartisection: theory of numbers, xi, 84—96.

Quasi-inversion: and orthomorphosis, xiii, 192—3.

Quasi-minima: the term, xiii, 42.

Quasi-normal: the term, xiii, 228.

Quaternary: the term, vi, 464.

Quaternary Function: Hessian of, ix, 90—3.

Quaternions: certain results, i, 123—6, 127; algebraic couples, i, 128—31; rotation, i, 465—9, 589, v, 537; formula of, ii, 107; transformation of quadrics, ii, 135; skew determinants, ii, 214; transformation of coordinates, iv, 559; the equation \(qQ - Qq = 0 \), xii, 300—4, 311—3; matrices, xii, 303; multiple algebra, xii, 474; hydrodynamical equations, xiii, 8; versus coordinates, xiii, 541—4.

Quet, J. A.: relative motion, iv, 536, 592.

Quinquissection: theory of numbers, xi, 314—6, xii, 72—3.

Quintic Curves: and developables, i, 500—6; in space, v, 15—6, 20, 24—30, 552, 553, 613; in connexion with cubic and quartic, v, 580.

Quintic Developables: and surfaces, v, 272—8, 518.

Quintic Equations: for systems of equal roots, ii, 468—70; equation of differences, iv, 150—1, 246—61, 276—91; Tschirnhausen’s transformation, iv, 375—94; tables, iv, 379—80, 387—90; Jerrard’s researches, v, 50—4, 77, 79; character of, vi, 161—5; solvability by radicals, vii, 13—4, x, 11; theorem of Abel, xi, 132—5; solvable case of, xi, 492—4; and elliptic functions, xiii, 473; their sextic resolvents, xiii, 473—9.

Quintic Matrix: xii, 376—90.

Quintics: auxiliary equation for, iv, 309—24; Jerrard’s form, iv, 392; soluble by elliptic functions,
QUINTIC—RECIROCITY.

iv, 484; the term, iv, 604; MacClintock on, iv, 609—16; theorem of Abel as to soluble, v, 55—61, xi, 402—4; discriminant of, problem, v, 592; conditions for existence of systems of equal roots, vi, 300—12; concomitant system of, x, 342; syzygies among covariants of, x, 346—55; canonical form, x, 355—62; resolvent sextic of, xi, 396; bitangents of, xiii, 21; and seminvariants, xiii, 363—5; (see also Binary Quintics).

Quintic Seminvariants: and perpetuants, xiii, 309.
Quintic Surfaces: and developables, v, 272—8, 518; recent researches, vii, 244—52.
Quintic Transformation: of elliptic functions, ix, 122, 148, xii, 522—5.
Quippian: the word, ii, 381, 396—7.
Quotient: \(G/H \) in theory of groups, xiii, 336—7.

Radials: the term, xi, 238, xiii, 179.
Radicals: and solvability of equations, vii, 13—4, x, 8—11; theory of equations, xi, 511—20, 521; Galois and theory of, xi, 543; Weierstrassian cubic transformation, xiii, 31.
Radicals (Chemical): number of univalent, ix, 544—5.
Radii: the term link- and bar-; vii, 183; curvature of wave-surface, xiii, 248.
Range: defined, ii, 577; homography, ii, 578.
Rank of Seminvariants: xii, 22.
Ratio: and abstract geometry, vi, 457—62.
Rational Functions: the term, iv, 603—4.
Rational Transformation (see Transformation, Rational).
Rays: special symmetrical system of three, vii, 428—9; the term, x, 55; systems of, xii, 571—5.
Real Generating Function: x, 339.
Real Intersections of Curves: ix, 21.
Reciprocal Figures: i, 415—20.
Reciprocal Matrices: ii, 481.
Reciprocal Polars: i, 416, 421; Monge, xi, 465; Poncelet, xi, 466.
Reciprocals: of quartic scrolls, vi, 317—27; of cubic surfaces, vi, 368—455; of quartic surfaces, vii, 305; of centro-surface of ellipsoids, viii, 363; equation of conic, viii, 522—3; reciprocal lines, xiii, 58—9.
Reciprocal Surfaces, Theory of: vi, 329—58, 577—81, 582—91, 596—601; extension of Salmon's fundamental equations, vi, 329—31; developments, vi, 331—4; new singularities, vi, 334—41; application to a class of surfaces, vi, 341—2; flecnodal curve, vi, 342; surfaces of revolution, in connexion with spinodal and flecnodal curve, vi, 342—4; flecnodal torse, vi, 345; general surface of order \(n \) without singularities, vi, 345—6; formula for \(\beta \), vi, 347—53; recapitulation, vi, 353—5; addition, vi, 355—8; Zeuthen, vi, 596—601; theory, xi, 225—34.
Reciprocants: of quintic, ii, 320; the term, iv, 607, xiii, 366; and sextactic points, v, 618; of cubic, vi, 73; and Invariants, xii, 393; Sylvester on, xiii, 47—8; tables of pure, to weight eight, xiii, 333—5; and differential invariants, xiii, 366—404; Halphen on, xiii, 366, 368—81, 381—98; Cockle, xiii, 366, 367—8; Ampère and Lagrange, xiii, 366; Sylvester, xiii, 366, 379—81, 381—98; MacMahon, xiii, 399—404.
Reciprocation of Quartic Developable: v, 505—10.
Reciprocity: geometrical, i, 377—82; and quantics, ii, 232, 234; law of, for invariants, ii, 516; and homography, ii, 578.
Rectilinear Motion: iv, 515–6.
Reduced Latitude: vii, 16, ix, 238.
Reducible Syzygies (see Syzygies).
Reduction: of transcendental integrals, x, 214–22.
Reech, F.: contour lines, iv, 609.
Reflection: caustics by, 1, 273–5, ii, 118–22, 129.
Region: the term, ix, 331.
Regular: the term, vi, 457, 459.
Regulator: the term, vii, 492.
Result: the term, xi, 573, 632.
Rehorovsky, W.: symmetric functions, ii, 602.
Relation: and abstract geometry, vi, 457–62; onal, vi, 463; parametric, vi, 463–4; a discriminant, vi, 467; Jacobian, vi, 467.
Relink: the term, v, 521.
Reports: on progress of theoretical dynamics, iii, 156–204; on progress in solution of certain problems in dynamics, iv, 513–83; on Pellian equation, xiii, 430–67.
Representation: analytical, of curves in space, iv, 446–55, 490–5, xi, 83; of solid figure in plane, vii, 26–30; of surfaces on a plane, viii, 538; of variables by correspondence of planes, x, 316–23; conformal, xi, 78–81; graphical, of bimodal quartic and the elliptic functions, xiii, 9–19; Sylvester on graphical, xiii, 47; (see also Orthomorphosis, Transformation).
Réseau: the term, vii, 253.
Residuation: of cubic curve, ix, 211–4, xii, 115–6; of curves, xii, 502; Sylvester's theory of, xiii, 47.
Residues: Cauchy's theorem on, i, 148, 174; Eisenstein's geometrical proof of quadratic, iii, 39–43; nodal, of scrolls, v, 169–70, 181–3, 184, 187.
Resisting Medium: motion in, iv, 541.
Resolvents: after Lagrange, iv, 309; of quintics, xi, 396.
Resultant: the term, i, 63, 337, iv, 597, 602–3, vi, 460–7; of quantics, ii, 320; of two equations, ii, 440–53, vi, 292–9; of two binary quantics, iv, 1–4, ix, 16–7; of three ternary quadratics, iv, 349–58; of two binary cubics, v, 289; of forces, x, 559.
Resultor: defined, ii, 59.
Reuschle, K. G.: mathematical tables, ix, 468–9, 473, 485, 494–9, xi, 95–6; theory of numbers, xi, 85–6, 315, 612.
Rhamphoid Cusp: v, 265–6, 618.
Ribaucour, C. R.: orthogonal surfaces, viii, 569–70.
Richelot, F. J.: Abelian integrals, i, 366, 367; solution of equation \(z^{2n} - 1 = 0 \), li, 564; porism formula, lii, 90; in-and-circumscribed triangle, xii, 237–41; spherical pendulum, iv, 534, 592; rotation of solid body, iv, 577–8, 592; rotation round fixed point, iv, 583, 592; two quartic curves, x, 584; integral of Euler's differential equation, xiii, 525–9.
Riemann, G. F. B.: doubly infinite series, ii, 593; genus of curve, v, 476–7, 517; Abelian integrals, v, 521, xi, 30; Abelian functions, vi, 2, 264, 593; elliptic geometry, viii, xxxvii; transformation and theory of invariants, viii, 387; surface of, and correspondence, x, 317, 323; bitangents of.

Roberts, M.: geodesic lines on ellipsoid, vi, 34.

Roberts, S.: description of nodal biureal quartic, vii, 182–8; points on cubic curve, vii, 549; three-bar curve, ix, 551; symmetrical determinant, x, 579–90; theorems of squares, xi, 294; curves, xi, 481; kinematics of a plane, xiii, 505.

Rodrigues, O.: motion of solid body, i, 28–35, 124, 405, 583; quaternions, i, 124, 596; rotation of solid body, i, 237; skew determinants, i, 335; expansions in multiple sines, i, 583; attraction of ellipsoids, iii, 149–53; transformation of coordinates, iv, 558, 559, 592, xi, 575; kinematics of solid body, iv, 581, 592; on rotation formulae, v, 537; correspondence of homographies and rotations, x, 153.

Roof: the term in non-Euclidian geometry, xiii, 484.

Root-limitation: geometrical representation, ix, 21–39; general theory, ix, 22–7; intercalation theory for right line, ix, 28–33; rhizic theory, ix, 34–8.

Roots of Unity: prime, xi, 56–60.

Rosenhain, J. G.: theta functions, viii, xiii, x, 464, 499; double theta functions and 16-nodal quartic surface, x, 158, 162; theory of numbers, xi, 60; double theta functions, xi, 454.

Rotation: of solid body, i, 28–35, 237, 583, ii, 107, iii, 475–504, iv, 556–80, 592; quaternions and theory of, i, 405–9, 589; formula of, i, 586; and elliptic motion, iii, 475; of earth, iii, 485; infinitesimal, v, 488–9, vi, 24–6; of group of polyhedra, v, 529, 539; Euler’s memoir of 1758, vi, 135–46; equilibrium of, vii, 91–6; and homography, x, 153–4; in conformal representation, xi, 78.

Roulette: the term, xi, 447.

Route: the term, xii, 640.

Rowe, R. C.: memoir on Abel’s theorem, xi, 29–36; partitions of a polygon, xiii, 93, 112.

Royal Society: Cayley elected a fellow in 1852, viii, xiii; Croonian lecture founded, viii, xv; medals bestowed on Cayley, viii, xxi.

Rueb, A. S.: motion of solid body, i, 464; spherical pendulum, iv, 534; rotation of solid body, iv, 573–4, 592.

Rule of Signs: and determinants, xi, 492.

Sadleir, Lady Mary: endowments by, viii, xv.

Sadlerian Professorship: Cayley appointed to, viii, xvi.
SAFFORD—SCHWARZIAN.

128

St Laurent, M.: on caustics, ii, 118, 121, 122, 347, 355, 368.

Salmon, G.: cubic surfaces and triple tangents, i, 446, 456, 589; linear transformations and elimination, i, 457–61; singular contact, i, 486; curves and developables, i, 492, 587; developable from quintic curve, i, 500–1; 505; systems of equations, i, 533; geometry of position, i, 555; hyperdeterminants, i, 579, ii, 598–601; on a plane touching a surface, ii, 29; triple tangent planes of third order, ii, 29; invariant of ternary cubic, ii, 325; quippian, ii, 381; tables of covariants, ii, 536–7; binary quartics, ii, 549; tangential of cubic, ii, 558; equation of orthotomic circle, iii, 48–50; reciprocal surfaces, iv, 21–7, vi, 329–58, 359, 582–91; surface parallel to ellipsoid, iv, 158–65; double tangents, iv, 187–206, 343, xi, 473–4; cubic curves, iv, 188; conics and five-pointed contact, iv, 207–39; higher algebra, iv, 608; curves in space, v, 9–20, 614; quartic surfaces, v, 66, vi, 136; cubic surfaces, v, 140, vi, 359; scrolls, v, 168–9, 192, 200; proleedian, v, 267; involution, v, 301; higher singularities of plane curves, v, 620; plane curves, vi, 2; invariants, vi, 108; quintics, vi, 154; hyperspace, vi, 191; elimination, and curves which satisfy given conditions, vi, 192; extension of his fundamental equations, vi, 329–31; polyhedral curves, vi, 472, 531, 560; tetrahedral scrolls, vii, 52, 65; sextic torse, vii, 113, 114; centro-surface of ellipsoid, vii, 130, viii, 316, 320, 323; rational transformation between two spaces, vii, 226, 237; bicircular quartic, vii, 575; locus in plano, vii, 606; correspondence with Cayley, viii, xv; on Cayley, viii, xxi; evolves and parallel curves, viii, 33; theory of curve and torse, viii, 72, 76–9, 87–91; theory of invariants, viii, 356; transformation of unicursal surfaces, viii, 390, 391; residuation, ix, 211; triple theta functions, x, 444; tortuous curves, xi, 9; higher plane curves, xi, 217; Gaussian theory of surfaces, xi, 332; concomitants of ternary cubic, xi, 342; tables for binary sextic, xi, 377; Jacobian sextic equation, xi, 390, 400; equal roots of equations, xi, 407; works on geometry, xi, 546; minimal surfaces, xi, 639; bitangents of quints, xii, 21; wave surfaces, xiii, 252.

Scalars and Quaternions: xii, 541.

Scalene Transformation of Plane Curve: ix, 527–34.

Schlösmlc, O.: attractions, i, 288; a definite integral, iv, 29.

Schröter, H.: Steiner’s quartic surface, v, 423; construction of regular pentagon, xii, 47.

Schwarz, H. A.: inverse elliptic functions, i, 586; developable surfaces, v, 517–9; deficiency, vi, 2; scrolls, vi, 312; quartic scrolls, vii, 250, 252; projections, ix, 508; surface of minimum area, x, 63; hypergeometric series, xi, 125; orthomorphism, xii, 328, xiii, 188, 191, 192, 193, 202; Kummer’s differential equation, xiii, 69.

Schwarzian Derivative and Polyhedral Functions, Memoir: xi, 148–216; introductory, xi, 148–51; Part I, xi, 151–79; the derivative, xi, 151–3; quadric function of three or more inveris, xi, 153–6; functions P, Q, R, xi, 156–7; table ditto, xi, 158–9; differential equations involving (x, z) and (s, x), xi, 160–9; Schwarzian theory, xi, 169–76; connexion with differential equation for hypergeometric series, xi, 176–9; Part II, the polyhedral functions, xi, 179–216; origin and properties, xi, 179–83; covariant formulae, xi, 184–5; the forms of f and k, xi, 185–6; stereographic projection, xi, 187–9; groups of homographic transformations, xi, 189–90, 196–208; the regular
polyhedra, xi, 199—5; system of fifteen circles, xi, 206—12; regular polyhedra as solid figures, xi, 212—6.

Schwarzian Derivative, and Polyhedral Functions: xi, 149, 173, 177; and Kummer's differential equation, xiii, 69; and reciprocals, xiii, 366.

Schwarzian Function: Sylvester on the, xiii, 381.

Scolar: the term, vi, 334.

 Scrolls, Second Memoir: v, 201—20, vi, 360; degeneracy, v, 201—3; with two directrix lines, v, 203—5; twofold directrix line, v, 205—7; scroll equations, v, 207—10; cubic scrolls, v, 210—3; quartic scrolls, v, 214—9; general theory, v, 219—20.

 Scrolls: cubic, v, 90—4, 110—2; quartic, vi, 451; tetrahedral, vii, 48—53; on certain, vii, 54—65; recent researches, vii, 250—1; and octic surfaces, x, 79—92; flexure and equilibrium, xi, 317—22; the term, xi, 573; applicable upon a given skew surface, xiii, 231—7.

Secondary Caustics (see Caustics).

 Secular Acceleration of Moon's Mean Motion: iii, 522—561.

 Seeber, L.: mathematical tables, ix, 491—2.

 Segar, H. W.: development of \((1+n^m x)^{m/n}\), xiii, 354—6.

 Segner, J. A. v.: inertia, iv, 561—2, 592.

 Segregates: the term, x, 339, 345; table of, x, 349—55.

 Seminvariants, memoir: xii, 239—62; introductory, xii, 239—40; multiplication of two symmetric functions, xii, 240—8; capitulation and decapitation, xii, 248—50; perpetuants, etc., xii, 250—7; sextic perpetuants and sextic syzygies, syzygants, xii, 257—62.

 Seminvariants: the term, iv, 241, 606; theory of, xii, 22—9, 344—57, xiii, 362—5; tables, xii, 275—89, xiii, 217—23; theorem relating to, xii, 326—7; (see also Covariants, Invariants).

 Seminvariants and Symmetric Functions, Memoir: xiii, 263—332; introductory, xiii, 265—6; the coefficients \((a, b, c, \ldots)\), xiii, 266—71; symmetric functions of the roots, xiii, 271—85; MacMahon form of equation, xiii, 286—8; the \(l\) and \(F\) problem, and solution by square diagrams, xiii, 288—98; MacMahon linkage, xiii, 298—301; umbral notation, Stroh's theory, xiii, 301—6; symmetric functions of a given degree: generating functions, xiii, 306—8; reducible seminvariants—perpetuants, xiii, 308—13; Strohian theory resumed: application to perpetuants, xiii, 314—8; investigation of the values of the foregoing functions, xiii, \(P_{10}(x+y)\) \(P_{15}(x+y)\) and \(P_{15}(x+y+z)\), xiii, 318—21; the operators, xiii, 322—32.

 Senate House Problems: ix, 246—9, xi, 265—7, xiii, 538—40; (see also Smith's Prize Papers).

 Separations of Partitions: ii, 603; (see also Partitions).

 Separator: the term, vii, 402.

 Septic, Binary: generating functions of, x, 495—21.

 Series: a double infinite, ii, 8—10, 593; sums of, iii, 124—8, xiii, 49—50; reversion, iv, 30—7; formula for reversion, iv, 54—9; in integration of differential equations, viii, 458—62; hypergeometric, xi, 17—25, 125—7; in Eucy. Brit., xi, 617—27 (finite, xi, 617—20; infinite, xi, 620—7).

 Serpoloid Curve: iv, 571—2.

 Serret, J. A.: attractions, i, 288; integral calculus, i, 313; elliptic functions, iii, 3; integration of differential equations, iii, 185—6, 203; problem of two centres, iv, 528, 531, 592; theory of substitutions, vii, 47; curves of curvature, vii, 331, xii, 601—38; orthogonal surfaces, vii, 279, 292; indefinite integration, ix, 500—3; transformation of cubic function, xi, 411; minimal surfaces, xiii, 595.
SERRET—SIXTEEN.

Serret, P.: syzygetic relations, xiii, 224.
Servois, J. F.: multiple algebra, xii, 468.
Sets: homology of, iii, 35.
Sextactic Points: and plane curves, v, 545, vi, 217; and reciprocants, v, 618.
Sextactic Reciprocant: xiii, 387.
Sextic: binary, and quintics, vi, 190; unicursal, vi, 248; and cubic curves in pencil of six lines, vi,
 593—4; the anharmonic-ratio, vii, 314—5; bicursal, ix, 551, 581—6; tricircular, ix, 562—70;
 numerical generating function, x, 394—6.
Sextic Cone: circumscribed to quartic surface, vii, 265; and nodes, table, vii, 291.
Sextic Curves: foci of conics, vii, 1—4; rational transformation, vii, 236—8; and nodes, vii, 256—7;
 and quartic surfaces, vii, 267—71; mechanical description, viii, 138—44; with five double points,
 ix, 504—7.
Sextic Developable: v, 279—83, 511—9, vi, 87—100.
Sextic Function: and Abelian functions, xi, 483.
Sextic Resolvent: Jacobian, iv, 310, xi, 389—401, xii, 493—9.
Sextic Seminvariants: and perpetuants, xiii, 317.
Sextic, Spherical: and oval, v, 469.
Sextic Torse (see Torse, on a certain Sextic, also Torses).
Shanks, W.: log 2, xi, 70.
Sharp-cone: the term, viii, 102.
Sheets: roots in algebraic equations, iv, 116—9; cubic curves, iv, 120—2.
Shell: formulae for potential of, ix, 266—7; attraction of ellipsoidal, on exterior point, ix, 302—11.
Sibi-reciprocal Surfaces: vi, 21, x, 292—5.
Siebeck, F. H.: binodal quartic and graphical representation of the elliptic functions, xiii, 10.
Signs: rule of, iv, 585—6, xi, 492.
Simple Cone: defined, v, 402, 404, 551.
Simple Groups: xiii, 533.
Simultaneous Equations: Jacobi's theorem in, xii, 39.
Simultaneous Roots of Two Equations: Jacobi's theorem in, xii, 123—5.
Sines, Multiple: x, 1—2.
Single Theta Functions: memoir, x, 473, 476—97; and double theta functions, x, 155—6, 186—9;
 and elliptic functions, xi, 230—1; linear transformation, xiii, 50—5.
Singular Curve: on surface, viii, 244.
Singularities: of curves and developables, i, 208; of tortuous curves, i, 500; of surfaces, ii, 23—32;
 iv, 21—7, vi, 123—8, 334—41, 354, 582—5, vii, 394—8, xi, 225—6, 630—1; of plane curves,
 v, 424—6, 476—7, 520—8, 619, vi, 3, xi, 30—6; of curves and torses, v, 516; compound, v, 525;
 of curves in space, v, 613; of cubic surfaces, vi, 363; reciprocal surfaces, vi, 596—601; of curves,
 xi, 486—70.
Singular Point: for differential equations, xii, 395; integrals in domain of, xii, 395—402.
Singular Solutions of Differential Equations: iv, 426—7; of first order, viii, 529—34 x, 19—24.
Six Coordinates of a Line (see Coordinates, Six of a Line).
Six Lines: Sylvester's involution of, vii, 66.
Six-pointed Contact: on cubic, iv, 207.
Sixteen-nodal Quartic Surfaces: i, 587, v, 431—7, vi, 126—7, 281—4, x, 157—65, 180—3, 437—40,
 464, 548—51, 604, xii, 95—7.
Skew: the word, i, 332.
Skew Convertible Matrices: ii, 489.
Skew Covariants: ii, 233.
Skew Cubics: demonstration of Chasles’ theorem, i, 212.
Skew Curvature: the term, i, 234.
Skew Determinants: the term, and some properties of, i, 332—6, 410; on, i, 410—3, 589; researches, ii, 202—15, iv, 72—3; and transformation, ii, 497; a theorem, iv, 72—3.
Skew Matrix: iv, 662.
Skew Polars: i, 378.
Skew Reciprocals: the term, i, 415.
Skew Surfaces (see Scrolls).
Slope Lines: iv, 106—11, 609.
Smith, H. J. S.: higher singularities of plane curves, v, 619; transformation of elliptic functions, ix, 174—5; report on mathematical tables, ix, 461—99; death of, xi, 429; theory of numbers, xi, 612; theta and omega functions, xii, 50; theta functions, xii, 337; transformation, xiii, 38; predecessor of Sylvester in Oxford chair, xiii, 44; on a memoir by, xiii, 558—9.
Smith, P.: on Lagrange’s solution of caustic, ii, 353.
Smith’s Prize Papers: viii, 414—35, 436—8, 439—57, 474—90, 496—516, 538—9, 551—5, 558—63; infinitesimal rotation, vi, 24—6; general equation for virtual velocities, ix, 265—8; solutions and remarks, ix, 218—36; Bernoulli’s numbers in analysis, ix, 259—62; problems and solutions 1877, x, 39—46; question on theory of equations, xi, 115; on potentials, xi, 261—4.
Sohnke, L. A.: motion in resisting medium, iv, 541; transformation of elliptic functions, ix, 113, 114; ditto table, ix, 128—35; modular equations, ix, 543.
Solar Eclipse, Graphical Construction: vii, 390—1, 479—92; geometrical theory, vii, 392—6, x, 310—5; general explanation, vii, 479—82; modification for single blank projection, vii, 482—4; construction of relative orbits, vii, 484—7; geometrical theory of projection of penumbral curve, vii, 488—9; details and application to eclipse 21—22/12/70, vii, 489—92.
Solid Body: motion of, i, 28—35, 583; geometrical representation of motion, i, 234—6; rotation round fixed point, i, 237—52, 336; rotation of, i, 462—4, iii, 475—504, iv, 577, 592; four forces acting on, ix, 201.
Solid Integral Prepotential: ix, 334—7.
Solid of Revolution: attraction of, i, 508.
Solids: Poinsot’s four new regular, iv, 81—5, 86—7; plane representation of, vii, 26—30.
Solutions (see Problems, Problems and Solutions, Smith’s Prize Papers).
Somoff, J.: rotation of solid body, iv, 577, 592.
Space: of any number of dimensions, and quantities, ii, 222; facultative and non-facultative, vi, 156; dimensions and abstract geometry, vi, 456—7; rational transformation, vii, 189—240; multiple, viii, xxxiii—v; points and lines, correspondence in, viii, 566; flexure, x, 331—2; the term in five-dimensional geometry, ix, 79; theories of, xi, 434—7; curves in, xi, 459; elliptic, and non-Euclidian geometry, xiii, 481; (see also Hyperspace).
Special Conditions for Curves: vi, 193.
Species: of Quartic Scrolls, v, 291, vi, 328; twenty-three, of cubic surfaces, vi, 359—60.
Specific: the term, xiii, 290.
Sphere: powers of, i, 581; and polyhedron, v, 531; problem and solution, vii, 563; prepotentials, ix, 351—2, 359—79; in Ency. Brit, xi, 571—2.
Spherical Conics: theorem, iv, 428; stereographic projection, v, 106—9; (see also Polyzontal Curves).
SPHERICAL—STRICTION.

Spherical Curves of Curvature: surfaces with, xii, 601—38.
Spherical Triangle: theorem of, iv, 80; nine-point circle of, xiii, 548—51.
Spherogram: the term, vii, 494; and isoperimetric lines, vii, 467—8; e- and isoeccentric lines, vii, 468—70; time- and isochronic lines, vii, 470—7; two plates, vii, to face 478.
Spheroidal Trigonometry: ix, 197.
Spheroid, Oblate: geodesic lines on, vii, 15—25.
Spherograph: the term, viii, 262.
Spinodal Curve: vi, 342—4, 583—5.
Spinode: synonymous with cusp, ii, 28, iv, 22, 27; the term, v, 521; plane and torse, vi, 355, 583—5, 601.
Spinode Curves: and cubic surfaces, vi, 450, 595.
Spottiswoode, W.: incepts, iv, 419; determinants, iv, 608; text-book on determinants, iv, 608; intersection of line and conic, v, 500—4; twenty-one coordinates of conic in space, xi, 82—3; death of, xi, 430; Sylvester's researches, xiii, 44.
Square Diagrams: seminvariants and solution by, xiii, 288—98.
Squares: products of sums of, ii, 49—52; surfaces divisible by curves of curvature into, viii, 97—8, 145—6, 264—8; theorems of 2-, 4-, 8-, 16-, xi, 294—313; imaginaries of 8-, xi, 368—71; Mill on, xi, 432—3; Latin-, xiii, 55—7; orthomorphosis of, into circles, xiii, 191—202.
Squares of Roots: equations of, iv, 242—3.
Squarewise Contractible: the term, xiii, 179.
Statics: six coordinates of a line, vii, 89—95; and time, xi, 444; and Archimedes, xi, 446.
Stativity: the term, viii, 213.
Staudt, K. G. C. v.: distances of points, i, 581; theory of distance, ii, 605; theorem of, on Bernoulli's numbers, ix, 261.
Steiner, J.: Pascal's theorem, i, 322—8; geometry of position, i, 356, 550—8; transformation of curves, i, 474; conics inscribed in a quadric surface, i, 557; cubic surfaces and triple tangent planes, i, 559; extension of Malfatti's problem, ii, 57—56, 593; porism formula, ii, 90; harmonic relation of two lines or points, ii, 96; in-and-circumscribed polygon, ii, 141; problems on quadrics, ii, 179—80; pippian, ii, 381, 391; systems of circles, iii, 113; double tangents, iv, 187; conics, iv, 207; point of six-pointic contact on cubic, iv, 207; conics touching curves, v, 31—2; generalized theorem, v, 100—2; pedals, v, 113; quartic surface, v, 421—3; theorem of eight points on a conic, v, 427—30; Cäsio's equation, vi, 67; locus, envelope, and triangle, vi, 72; bitangents of quartic curve, vii, 124; quartic surface of, vii, 247, viii, 389, ix, 1—2, x, 607; attraction of ellipsoidal shell, ix, 302.
Stellated Polyhedra: iv, 82, 609.
Stereographic Projection: of spherical conic, v, 106—9; geodesic lines on oblate spheroid, vii, 24—5; property of, vii, 397—9, xi, 187—9, 569.
Stereoscope: and cubic curves, iv, 122.
Stern, M. A.: sums of certain serics, iii, 126.
Streblosis: xi, 79, 81.
Striction, Curve of: the term, i, 234.
Stroh, E.: perpetuants, xiii, 266, 301—6, 314—8.
Study, E.: Zeuthen on, vi, 594.
Sturm, R.: homography, viii, 200; correspondence of points and tetrahedra, viii, 200—8; root-limitation, ix, 39; theory of equations, x, 4—5, xi, 498—9, 505.
Sturmian Constants: for cubic and quartic equations, iv, 473—7; for quantics, vi, 159.
Sturmian Functions: note on, i, 306—8, 588; new researches, i, 392—6; endoscopic and exoscopic expressions, i, 588; tables for equations from second to fifth degrees, ii, 471—4.
Sturm's Theorem: vi, 159, 161; Sylvester's work at, xiii, 46.
Subinvariants: the term, xii, 251, 273.
Subrational: the term, ix, 315.
Sub-regular Integrals: of differential equations, xii, 444—52.
Substitutions: theorem relative to theory, vii, 47; arising from a problem in arrangements, x, 247-8; and theory of groups, x, 324—30, 401—6; and permutations, x, 574; evolution, xi, 435; the notion of, xi, 599—10, 521; Latin squares, xiii, 55—7; groups for two to eight letters, xiii, 117—49; Sylow's theorems on groups, xiii, 530—3; sixty icosahedral, xiii, 552—7.
Subsurface: the term, ix, 79.
Summit: defined, v, 63, xiii, 507.
Sums: of squares, ii, 49—52; the term, x, 186, 192; of two series, xiii, 49—50.
Sun: and moon's mean motion, iii, 522—61; Newcomb on parallaxes, ix, 177—8; (see also Solar Eclipse).
Supercurve: the term, ix, 79.
Superlines: in hyperspace, ix, 79—83.
Sup: the term, vi, 263.
Supplement: the term, vi, 263.
Suremain-de-Missery, A.: imaginaries, xii, 467.
Surface, Congruence, Complex, in Ency. Brit.: xi, 628—39; introductory, xi, 628—9; surfaces in general: torse, xi, 629—32; surfaces of orders 2, 3, and 4, xi, 632—4; congruences and complexes, xi, 634—5; curves of curvature: asymptotic lines, xi, 635—6; geodesic lines, xi, 636—7; curvilinear coordinates, xi, 637; orthotomic surfaces: parallel surfaces, xi, 637—8; minimal surface, xi, 638—9.
Surface-integral: prepotential, ix, 321—30.
Surface of Centres: for wave-surface, xiii, 248; (see also Ellipsoid, Centro-surface of).
Surface of Cylinder: Archimedes' wave-surface for, xii, 56—7.
Surface of Revolution: and Mercator's projection, viii, 567.
Surfaces: equimomental, i, 253—4; wave (tetrahedroid), i, 302—5, 587; confocal, i, 362—3; singularities, ii, 28—32, iv, 22—7; theory of skew, ii, 33—4; envelopes and parallel curves, iv, 123—33, 152—7, 158—65; curvature of, iv, 466—9; theorem on degenerate, v, 98—9; developable, and prohessians, v, 267—83; planar, v, 575; sibi-reciprocal, vi, 21, x, 252—5; sextic, vi, 87—100; singularity of, vi, 125—8; tetrahedral, vii, 48—53; on certain skew, vii, 54—65; Steiner's, vii, 247; intersection of two, vii, 563; divisible into squares by curves of curvature, viii, 97—8, 145—6, 264—8; correspondence, transformation, and deficiency, viii, 200—8; penultimate forms of, viii, 262—3; transformation of unicursal, viii, 388—93; deficiency of certain, viii, 394—7; reciprocal, viii, 394; of eighth order, viii, 401—3; representation on plane, viii, 538—9; families of, viii, 567; transformation of equation of, to chief axes, ix, 48—51; the term, in five-dimensional geometry, ix, 79; orthogonal to set of lines, ix, 587—91; flexure of spherical, x, 30—2; of minimum area, x, 63—7, xiii, 41—2; octic, x, 79—92; on a sibi-reciprocal (octic), x, 252—5; flecnodal planes, x, 262—4; Jacobian of six points, x, 281—93; flexure of, x, 331—9; distribution of electricity on two spherical, xi, 1—6; general theory, xi, 14—6, 224; deformation and flexure of, xi, 66—7, 317—22; theory of apsidal, xi, 111—3; theory of reciprocal, xi, 225—34; contact of line with, xi, 281—93; geodesic curvature of
SWITZERLAND—SYMMETRIC.

134
curve on a, x_1, 323—30; Gaussian theory, x_1, 331—6; and solid geometry, x_1, 569; ruled, in Ency. Brit., x_1, 572—3; in Ency. Brit., x_1, 580—2; general theory of curvilinear coordinates, x_{II}, 1—18; determination of order of surface, x_{II}, 42—4; minimal, and Joachimsthal's theorem, x_{II}, 594—5; with plane or spherical curves of curvature, x_{II}, 601—38; quasi-minimal, x_{III}, 42; the absolute, x_{III}, 42; applicable to each other, x_{III}, 253—64; and systems of tetrahed of circles, x_{III}, 425—9; of order n which pass through given cubic curve, x_{III}, 534—5; (see also Developables, Monoid, Orthogonal, Parallel, Reciprocal, and Wave Surfaces, Scrolls).

Switzerland: Cayley's visits to, v_{III}, 65—6.

Sylow, L.: theorems on groups, x_{III}, 530—3.

Sylvester, J. J.: special factors, I, 337; Sturmian functions, I, 392, II, 471—4; schoolgirl problem, I, 453; theory of hyperdeterminants, I, 577, 589; commutants, I, 584; ondoscopic, I, 588; theory of permanants, I, 219, 604; law of reciprocity, I, 232, 234; partitions, II, 248—9, 506, x_{II}, 217; contravariants, II, 329; combinatorial, II, 322; cubic curves, II, 465; symmetric functions, II, 465; canonical forms, II, 523; cebezoutiants, II, 524; bezoutiants, II, 526; hyperdeterminants, II, 598—601; logic of characteristics, III, 52; a special determinant, III, 122; elimination, III, 214—5; independent variables in differential calculus, III, 246; reversion of series, IV, 36, 37, 54—9; canonical form of binary quantics, IV, 43—52, 53; double partitions, IV, 166—70; conics and five-point contact, IV, 231; on derivative of point on cubic, IV, 231; finite differences, IV, 263; equation of differences, IV, 277; invariants, IV, 349; Tschirnhausen's transformation, IV, 391; volume of tetrahedron, IV, 462; involution of six lines, IV, 582, 583, V_{II}, 66; lines in involution, V, 1—3; quadric cones, V, 6; quartic surfaces, V, 69; canonical root of binary quintic, V, 103—6; discriminant of quintic, V, 592; conic and cubic, V, 608; derivation of points of cubic curve, VI, 20; quintics, VI, 147—8; on roots of algebraical equation, VI, 147; bicorn, VI, 138; foci of conics, v_{III}, 1—4; differential operators, v_{III}, 5; cubic transformation of elliptic functions, v_{III}, 44; Cartesian curves and cubic curve, v_{III}, 556; spherical problem, v_{III}, 563; discussions with, on covariants, v_{III}, 15; theory of matrices, v_{III}, $xxxii$—iii; root-limitation, IX, 22, 39; elimination, IX, 43, X_{III}, 545—7; residuation, IX, 211; quartic curves and functions of a single parameter, IX, 315—7; scalar transformation, IX, 527, 534; development of idea of Eisenstein, x, 55—9; numerical generating function, x, 339; linkwork, x, 407; N.G.P. of binary septic, x, 408—9; theorem relating to covariants, X, 430; on trees, X, 598—600; theory of tamisage, XI, 499—10; partitions, X_{II}, 217; perpetuants, X_{II}, 251, 252, 253; non-unitary partition tables, X_{II}, 273; d'Alembert-Carnot geometrical paradox, XX, 305—6; umbre, XII, 347; invariants and reciprocants, XII, 393; a Diophantine relation, X_{II}, 506; Nature, notice in, X_{II}, 43—8; syzygetic relations, X_{III}, 224; reciprocants, X_{III}, 333—5, 396, 379—81; lectures on theory of reciprocants, X_{III}, 381—98.

Symbolical Forms: of hyperdeterminants, I, 80—94; of covariants, I, 577, 585.

Symbols: modular functions, IV, 484—9.

Symmetric: the term, I, 410.

Symmetrical: the term, IV, 599, 604, VI, 524—5, XI, 496.

Symmetric Curve: and system of equations, I, 473.

Symmetric Functions: of roots of an equation, II, 417—39, 602—3; partitions, II, 418; tables, II, 423—39; resultant of a system of two equations, II, 440—53; tables, II, 445—53, VI, 292—9; of the roots of certain systems of two equations, II, 454—64, VI, 292—9; conditions for existence of given systems of equalities among roots of an equation, II, 465—76, 603—4, VI, 300—12; tables, II, 467; conditions for existence of systems of equal roots of binary quartic or quintic, VI, 300—12; and theory of equations, X, 6—8; non-unitary, and seminvariants, X_{II}, 239—48, 275; tables of roots, X_{II}, 263—72, 273—4; a differential operator, X_{II}, 318; seminvariants, X_{III}, 265—332; (see also Seminvariants).
Symmetroid: the term, vii, 134, 259; lineo-linear correspondence of quartic surfaces, vii, 157—9; and Jacobian, vii, 169—3, 175; with given nodes, vii, 163—6; and decadianome, vii, 256, 259; and circumscribed cone, vii, 258—9; theory, vii, 264.

Symmetry: Sylvester on, xiii, 45.

Symptose: the term, i, 523, 529, 557—8.

Syntypic: the term, vii, 123.

Système Linéaire: of Laguerre is a matrix, ii, 604.

System of Equations: order of, i, 457—61, 589; connected with Malfatti’s problem, i, 465—70; note, i, 532—3, 589; algebraical, xi, 39—40.

Syzygy: the term, xii, 251; and semivariants, xii, 257—62.

Syzygies: of degree six, vi, 145—53; of binary quintic connected, vii, 334; for binary cubic, ix, 55; of quintic, x, 346—55; of sextic, xii, 257—62; of binary quartic, and elliptic integrals, xiii, 32; Sylvester’s work in, xiii, 46; syzygetic relations among powers of linear quantics, xiii, 224—7; and semivariants, xiii, 310.

Tables, Brit. Assoc. Report on Mathematical: ix, 461—99; introductory, ix, 461—2; of divisors and prime numbers, ix, 462—70; prime roots, ix, 471—7; Pellian equation, ix, 477—80; partitions, ix, 480—3; quadratic forms, ix, 484—6; binary, ternary, quadratic, and higher forms, ix, 486—93; complex theories, ix, 493—9.

Tables: linear transformations, i, 108; of covariants for quadratic, cubic, quartic, quintic, ii, 276—81, ii, 310—35; of covariants M to W of binary quintic, ii, 282—309; covariants for sextic, ii, 314—5; for septimic, ii, 315—6; for octavic, ii, 316—8; for nonic, ii, 318—9; of concomitants of ternary quadratic, ii, 322—3; of ternary cubic, ii, 323—9, 331—5; of symmetric functions of roots of equation, ii, 423—39; of resultants of two equations, ii, 449—53; Sturmian functions for equations from second to fifth degrees, ii, 471—4; disturbing function in lunar theory, iii, 299—308, 311—8, vii, 516, 519—24, 525—7; of functions in theory of elliptic motion, iii, 356—474; Degen’s, for Pellian equation, iv, 40; equation of differences, iv, 246—56, 290—91; Arbogast’s method of derivations, iv, 274—5; concomitants of ternary cubics, iv, 333—41; Tschirnhausen’s transformation for quartics, iv, 373—4, 379—80; and for quintics, iv, 387—90; numerical expansions, iv, 470; polyacra, v, 44; binary quadratic forms, v, 141—56, 618; properties of scrolls, v, 171—2; axial systems of polyhedra, v, 532—9; curves in space, v, 616; for prime or composite modulus, vi, 83—6; asyzygetic covariants, vi, 149—162; quantics, vi, 167—8; resultant of a system of two equations, vii, 292—9; conditions for existence of systems of equal roots of quartic or quintic, vi, 300—12; singularities of cubic surfaces, vi, 363; also lines and planes, vi, 373; Legendre’s elliptic functions, vii, 20; geodesic lines on oblate spheroid, vii, 23; rational transformation between two spaces, vii, 210—3, 224; nodal quartic surfaces, vii, 283, 287, 291, 296; quartic surfaces, vii, 310, 609—10; irreducible covariants of binary quintic, vii, 341—6; planogram No. 1, vii, 439—40; ditto No. 2, vii, 450—1; geodesic lines on ellipsoid, vii, 504—6; binary cubic forms, viii, 51—64; theory of curve and torse, viii, 81—4; Poncelet’s of logarithms (review), viii, 95—6; cones satisfying six conditions, viii, 100; geodesic lines, particularly on quadric surface, viii, 196—9; in-and-circumscribed triangle, viii, 214—21; centro-surface of ellipsoid, viii, 365; Steiner’s surface, ix, 7; transformation of elliptic functions, ix, 128—35, 163; Newcomb’s planetary, ix, 181—4; projection of skew hyperboloid of revolution, ix, 240; classification for mathematical, ix, 424—5; report on mathematical, ix, 424—5; chemical trees, ix, 436—43, 446—8, 450—60, 544—5; double theta functions, x, 165—9, 171, 172—3; regular solids, x, 270—3; concomitants of quintic, x, 349—55, 362—9, 370—6, 377—94, 397—400; transvectants for quintic, x, 378—394; Guass’s hexads, x, 506; theta functions, x, 507—10, 513—28, 530—6, 540—2, 544—6; theory of numbers, trisection, xi, 59; ditto quartics, xi, 94; Reuschle’s, of prime roots, xi, 95—6; of finite differences, xi, 144—7; connected with polyhedral function, xi, 158—9, 192; covariantive, xi, 272—80; Schubert’s
TACINVARIANT—TETRAHEDROID.

numerative geometry, xi, 286; theorems of squares, xi, 299—313; theory of numbers, xi, 316; concomitants of ternary cubic, xi, 345—7; literal, for binary quantics, otherwise a partition table, xi, 357—64; for binary sextic, xi, 372—6; 377—88; covariant, xi, 409—10; Päcker's equations, xi, 472; of Gauss, xi, 545; symmetric functions of roots of an equation, xi, 263—72, xiii, 272—4, 288; non-unitary partition, xii, 273—4; seminvariant, xii, 275—89; orthomorphosis of circle into parabola, xii, 336; of groups, orders two to twelve, xii, 643—56; Wallis's investigation for π, xiii, 23—5; quadrinvariant and cubinvariant of quadri-quadric function, xiii, 68; partitions of a polygon, xiii, 95, 112; theory of rational transformation, xiii, 116; substitution groups for two to eight letters, xiii, 118—49; corrected seminvariant for weights 11 and 12, xiii, 217—23; of conjugates, xiii, 303; seminvariants and symmetric functions, xiii, 311, 313, 331—2; of pure reciprocants to weight 8, xiii, 333—5; report of British Association committee on Pellian equation, and tables, xiii, 430—67; omega and theta functions, xiii, 558—9.

Tacinvariant: the term, iv, 607.
Tacalocus: in singular solutions, viii, 533.
Tacanode: defined, ii, 28—32, v, 286.
Tactic: and algebra, v, 293—4; the term, xi, 443; (see also Arrangements, Groups).
Tacticinvariant: of two quantities, ii, 320; the term, v, 305.
Tactics: analytical solution, iii, 255—7; formula, iv, 510—2; Casey's equation, vi, 543; and trizonal curves, vi, 575; problem of, xiii, 150—69.
Tait, P. G.: arrangements, x, 245; quaternions, xii, 303, 475, xiii, 541—4; finite differences, xii, 412.
Talbot, W. H. F.: curve of, iv, 123.
Tangential: defined, ii, 558; of a curve, iv, 188.
Tangent Omals: vi, 467—9.
Tangent Planes: and surface, xi, 630, 632—4.
Tangents: and two-dimensional geometry, ii, 575; inflexional and chief, viii, 157, 294; singular of a quartic, x, 603; in Ency. Brit., xi, 564—5, 579—89; (see also Bitangents).
Tantipartite: the term, i, 584, ii, 517, iv, 464, 604.
Taylor, H. M.: inversion, ix, 18; partitions of a polygon, xiii, 93, 112.
Taylor's Theorem: Lagrange's demonstration, viii, 493—5, 519; note on, viii, 524.
Tchebycheff, P.: theory of numbers, xi, 616.
Terminology: recent mathematical, iv, 594—608.
Terms: in symmetrical determinant, ix, 185—90.
Ternary: the term, iv, 604, vi, 464.
Ternary Cubics: relation between two, iv, 79—81; memoir on quantics, iv, 325—41; form problem, vii, 548; the 34 concomitants, xi, 342—56; canonical form, xi, 343.
Ternary Quadratics: resultant of three, iv, 349—58.
Ternary Quantics: and bitangents of plane curve, iv, 188; involution, v, 301—9.
Tetrad: the term, xii, 599; systems of, xiii, 425—9.
Tetrahedra: reciprocals, iii, 7; axial systems, v, 531—9; note on, v, 557—9; and cubic surfaces, vii, 607; correspondence of points in relation to two, viii, 200—8; Steiner's surface, ix, 1—12; in perspective, ix, 209—10; automorphic function for, xi, 169, 179—83, 184, 212—6.
Tetrahedroid: and wave surface, i, 302—8, 587; 16-nodal quartic surfaces, v, 431—7; the term, vi, 21, x, 252; and scrolls, vii, 245; as particular case of 16-nodal quartic surface, x, 437—40.
Tetrazomal (see Polyzomal Curves).

Text-Books: on determinants, elimination and higher algebra, iv, 608.

Theory of Equations (see Equations, Theory of).

Theory of Groups (see Groups).

Theory of Numbers (see Numbers, Theory of).

Theta Functions, Memoir on Single and Double: x, 463—565; historical, x, 463—4; Part I, x, 464—76; definitions, x, 464—5; allied functions, x, 465—6; even-integer alteration of characters, x, 466; odd ditto, x, 466; even and odd functions, x, 467; quarter-periods unity, x, 467—8; conjoint quarter quasi-periods, x, 468—9; product-theorem, x, 469—71; résumé of ulterior theory of the single functions, x, 471—3; ditto, double functions, x, 474—5; remark as to notation, x, 475—6; Part II, x, 476—97; notation, x, 476; constants of the theory, x, 477—8; product theorem, x, 478—80; the square-set, x, 481—2; relation between the constants, x, 482—3; product-sets, x, 483—4; comparison with Jacobi’s formulæ, x, 485; the square set, x, 485—7; elliptic integrals of third kind, x, 489—90; addition formulæ, x, 491—2; doubly infinite product forms, x, 492—4; transformation \(q \) to \(r \), x, 494—7; Part III, the double theta functions, x, 497—565; product-theorem, x, 497—506; tables, x, 506—8; product-theorem and its results, x, 509—39; tables, x, 513—39; the first set, x, 539; second ditto, x, 540; third ditto, x, 541; fourth ditto, x, 542; considerations, x, 543—8; résumé, x, 548; 16-nodal quartic surfaces, x, 549—51; \(x, y \) expressions of theta functions, x, 551—5; further results of product-theorem, x, 555—7; differential relations connecting theta and quotient functions, x, 557—9; differential relations of theta functions, x, 559—61; ditto, \(n, \xi, x, y \), x, 561—5.

Theta Functions: of Jacobi, i, 136, 290; and elliptic integrals, \(\xi \), 41—6; theory of multiple, \(\xi \), 242—9; notation, \(\xi \), 243—5; evolution, \(\xi \), 451—5; the term, \(\xi \), 532; linear transformation, \(\xi \), 337—43; formula relating to zero value of, \(\xi \), 442—3; Smith’s memoir, \(\xi \), 558—9; (see also Abelian, Double Theta, Elliptic, Single Theta, and Triple Theta, Functions).

Thomae, J.: linear differential equations, \(\xi \), 394, 396, 444; theta functions, \(\xi \), 442.

Thomson, P. D.: tangents of conic, \(\nu \), 578.

Thomson, J.: mechanical integrator, \(\xi \), 53.

Thomson, W. (see Kelvin, Lord).

Three-bar Motion: ix, 551—80, \(\xi \), 481, \(\xi \), 505—16.

Three Bodies: problem of, iii, 97—103, 183, iv, 548—552; in a line, iv, 538—40; other cases, iv, 549—1.

Time and Number: \(\xi \), 442—4.

Tissot, A.: spherical pendulum, iv, 534, 593.

Todhunter, I.: conics, iv, 481; Taylor’s theorem, \(\xi \), 493—5; \(q \)-squares, x, 27; probabilities, x, 600.

Topography: contour and slope lines, iv, 108—11, 609.

Topology: of space, \(\nu \), 22; of chessboard, x, 609.

Torsal: the term, \(\nu \), 334, 336, 341, 355, 582—5.

Torse, on a Certain Sextic: \(\nu \), 99—114; introductory, \(\nu \), 99—100; theorem of four binary quartics, \(\nu \), 100; standard equation of unicursal quartic, \(\nu \), 101; tangent line and osculating plane of unicursal quartic, \(\nu \), 101; its final form, \(\nu \), 102; determination of sextic torse, \(\nu \), 102—3; principal sections of ditto, \(\nu \), 103—5; partial determination of equation, \(\nu \), 105; determination of the unknown coefficients, \(\nu \), 106—11; equation of sextic torse, \(\nu \), 112; ditto, and centro-surface of ellipsoid, \(\nu \), 113—4.

Torses: the term, \(\nu \), 182, \(\xi \), 573; and scrolls, \(\nu \), 199—200; and curves, \(\nu \), 505—10; a special sextic developable, \(\nu \), 511—9; singularities, \(\nu \), 601; on some sextic, \(\nu \), 116—7, 118—20; circumscribed to two quadrics, \(\nu \), 320—1; on a sextic, \(\nu \), 68—72; depending on elliptic functions, \(\nu \), 73—8; C. XIV.
and certain octic surfaces, x, 79—92; kinds of, xi, 227; in Ency. Brit., xi, 628, 629—32; and surfaces, xi, 632; and non-Euclidian plane geometry, xii, 222; (see also Developables).

Torsion: the term, i, 234, xiii, 232, 234.

Tortolini, B.: envelopes, parallel curves and surfaces, iv, 123—33; parallel surfaces of ellipsoid, iv, 133.

Tortuous Curves (see Curves).

Torus: the term, vii, 246, viii, 25; paper by Darboux, vii, 247; the conic, ix, 519—21.

Townsend, R.: inertia, iv, 566, 593; confocal quadrics, viii, 520.

Tractor: the term, vii, 73—5, x, 269; six coordinates of a line, vii, 85—6, 93—5.

Trajectories: root-limitation, ix, 22—7; and orthomorphism, xiii, 170.

Transcendental Analysis (see Function).

Transcendental Function: the term, xi, 524.

Transcendental Integrals (see Abelian IntegraIs).

Transcendent, Gudermannian: v, 86—8, 617.

Transformation: of quadratic forms, ii, 145—9, 192—201, 215; of two quadric functions, iii, 129—31; the term modulins of, iv, 605; plane curves, vi, 1—8, 593, viii, 387; Cremona's, vi, 22—3; polynozal curves, vi, 553, 565—6; two quantics into each other, viii, 355—7; unicursal surfaces, viii, 388—93; binary quadratic form, viii, 398—400; doubly infinite products, x, 494—7; theories, xi, 482; Landen's, xi, 584; double theta functions, xi, 358—9; of order 11, and modular equation, xiii, 38—40; modular equation for cubic, xiii, 64—5; (see also Special Headings below).

Transformation, Geometric: vii, 121—2.

Transformation, Homogaphic: xi, 189—90, 196—208.

Transformation, Linear: ii, 225, xi, 237—41; imaginary linear, vi, 183—6; lineo-linear, vii, 215—6, 236—8; of theta functions, xii, 337—43.

Transformation of Coordinates: i, 123—6, 586, iv, 552—9, vii, 95, 415—7, xi, 136—42, 558—61; formulae, vii, 97—8.

Transformation of Elliptic Functions: i, 120—2, 585, v, 472, ix, 103—6, 244—5, x, 333—8, 611, xi, 26, xii, 416—7, 535—54, xiii, 29—32, 490—2, 505—34, 533—55, 556—7.

Transformation of Elliptic Integrals: i, 508—10, iv, 60—9, 609.

Transformation of Integrals: i, 383, iii, 1—4, 438—44, ix, 250—2.

Transformation of Tschirnhausen: vi, 165—9, x, 390; for cubics, iv, 364—7, xiii, 421; quartics, iv, 365—74; quartics and quintics, iv, 375—94, v, 449—53; theory of equations, xi, 509.

Transformation, Quadrir: of elliptic functions, xii, 58; between two planes, xii, 160—1.

Transformation, Rational, between Two Spaces, Memoir: vii, 189—240; introductory, vii, 189—90; general principle, vii, 190—3; homographic transformation between two lines, vii, 193—7; rational ditto between two planes, vii, 197—213, 216—21; tables, vii, 210—3; quadric transformation between two planes, vii, 213—6; quadric transformation any number of times repeated, vii, 219—21; reduction of general rational transformation to a series of quadric transformations, viii, 222—4; rational transformation between two spaces, vii, 224—9, 238—40; ditto quadri-quadric, vii, 229—30; ditto quadri-cubic, vii, 230—3; ditto cube-cubic, viii, 233—8; this principal system consists of six lines, vii, 234—6; principal system of a proper sextic curve—the lineo-linear transformation between two spaces, vii, 238—6.

Transformation, Rational: of plane curves, vi, 1—8; does not alter deficiency, vi, 3; between two planes and special systems of points, vii, 253—5; note on a theory of, xiii, 115—6.

Transformation, Rectangular: xi, 421—8.

Transformation, Scalene: of plane curve, ix, 527—34.
Transformation, Septic: of elliptic functions, x, 333—8, xi, 355—54.
Transformation, Special Quartic: of elliptic functions, ix, 103—6.
Transmutant: defined, ii, 515.
Transpose: the term, ii, 493.
Transvectant: form of covariants, viii, 404—8; (see also Derivatives).
Trees: analytical forms called, iii, 242—6, iv, 112—5, xi, 365—7; curves which satisfy given conditions, vi, 260; application to chemistry, ix, 202—4, 427—60, 544—5; problem and solution, x, 598—600; a theorem on, xiii, 25—8.
Triads: of seven and fifteen things, i, 481—4, 559; of fifteen things, v, 95—7.
Triangle: harmonic relation of point and line, ii, 96—7; reciprocal triangles, iii, 5—7; circumscribed about conic, properties of, iii, 29—34; theorem of line and conic, v, 100—2; problems, v, 564, 566, 593, vii, 581, 599, x, 575; locus in relation to, vi, 53—64; locus and envelope, vi, 72—82; solution of problem in Principia, Bk I. Sec. V. Lemma xxvii, vii, 30; potential of, ix, 270—1; non-Euclidian, xiii, 482—3; nine-point circle of a plane, xiii, 520—1.
Triangle, In-and-circumscribed, the Problem of, Memoir: viii, 213—57; introductory, viii, 212—3; tables, viii, 214—21; principle of correspondence, viii, 222—5; locus of a free angle, viii, 225—7; application of theory to locus, viii, 227—8; solutions for 52 cases, viii, 228—51; the case 52, viii, 251—57.
Triangle, In-and-circumscribed: ii, 57—90, 91—2, 138—44, 145—9, iii, 67—75, 229—41, iv, 435—41, v, 489—92, 549—50, 553, viii, 565—6; a posteriori demonstration of porism, iii, 50—5; (see also Porism).
Triangle, Spherical: theorem of, iv, 80, xi, 97—9; nine-point circle of, xiii, 545—51.
Tricircular Sextic: ix, 562—70.
Trigonometry: transformation of an expression, ii, 45—6; multiple sines, x, 1—2; theorem in partitions and, x, 16; identities, xi, 38, xiii, 538—40; formulae, xi, 108; an expansion, xii, 319—29.
Trigonometry, Spherical: theorem, iv, 80, xi, 97—9; identity, vii, 525; foundation, xi, 370.
Trigonometry, Spheroidal: ix, 197.
Trihedral Pair: the term, vi, 374.
Trinodal Quartic: x, 602; (see also Quartic Curves).
Tripair: the term, x, 450—1.
Tripartite: the term, vi, 464.
Triple Theta Functions: x, 432—6, xi, 47—9; algorithm for characteristics of, x, 441—3; and quartic curves, x, 446—54.
Tris: the abbreviation in groups, xiii, 119.
Trisection: in theory of numbers, xi, 84—96.
Trivector: the term, vii, 400, 401; planet’s orbit from, vii, 406—12, 426—8.
Trizomal (see Polygonal Curves).
Trope: the term, vi, 339, viii, 73, x, 54—5.
Tropical Point: the term, xiv, 433.
Truel, H. D.: imaginaries, xii, 467.
Tschirnhausen’s Transformation: vi, 165—9, xi, 396; for cubics, iv, 364—7, xiii, 421; quartics, iv, 368—74, 375—82, v, 449—53; quintics, iv, 382—94; theory of equations, xi, 509.
Twisted: the term, vi, 524—5.
Two Centres Problem: iv, 524—32.
Two-way Point: the term, xiii, 507.
Ueberschiebung: the word, i, 585; (see also Derivations).
Ultra-elliptic Functions (see Hyperelliptic Functions).
Umbilicar Centres: the term, viii, 326, 351.
Umbilic: and differential equations, v, 115—30; curves of curvature near, vii, 330—1; on surface of nth order, viii, 329; the term, xi, 581; (see also Geodesic Lines).
Umbra: theory of seminvariants, xiii, 206; notation of, and seminvariants, xiii, 301—6.
Umbæ: the term, xii, 347.
Unibasic: the term, xii, 642.
Unicursal Curves: xu, 2.
Unicursal Octics: xii, 310.
Unicursal Quarties: standard equation, vii, 101; tangent line and osculating plane, vii, 101; its final form, vii, 102.
Unicursal Surfaces: transformation of, viii, 388—93.
Unicursal Twisted Quartic: xii, 423—31.
Uniform Convergence: xiii, 342—5.
Uniform Function: xii, 433.
Uniform Series: defined, iv, 457.
Unipartite: the term, vi, 464.
Uniplanar-node: the term, vi, 361.
United Points: in correspondence, vi, 9.
Unity: prime roots, xi, 56—60; imaginary roots, ix, 263; ninth roots, xiii, 66.
Universal Algebra: Sylvester’s theory of, xiii, 47.
Unode: the term, vi, 362.
Uranus: Newcomb’s work, ix, 180—4.
Vacuity: Sylvester’s theory of, xiii, 47.
Values: principal, of complex expression, i, 309; of \(\Pi = \pi (1+i) \), xiii, 522—4.
Variables: (2, 2) correspondence of two, ix, 94—5; normal in dynamics, ix, 111; imaginary, xi, 439—41.
Variation: of parameters in rotation of solid body, i, 242; of arbitrary constants, iii, 161—200; of planet’s orbit, iii, 516—8, vii, 541—5.
Variations, Calculus of: Jacobi on, iii, 174; problem in, vii, 263.
Velocities, Virtual: general equation, ix, 205—8.
Veronese, G.: Pascal’s theorem, vi, 594; four-dimensional space, xi, 442.
Vertices of Cones (see Cones).
Vicinal Surfaces: conormal correspondence of, viii, 301—8; (see also Surfaces).
Vieta, F.: tactions, xiii, 132.
Virginia: Key and Sylvester, professors at, xiii, 43.
Virtual Velocities: general equation, ix, 205—8.
Wallis, John: biographical notice, xi, 640—3; multiple algebra, xii, 466; his expression for \(\pi \), xiii, 22—5.
Walton, W.: right-limitation, ix, 39; maxima and minima, ix, 40—1; transformation of equations, ix, 42; integration and definite integrals, ix, 56—63; ray planes and biaxal crystals, ix, 107—9.
Warren, J.: on binary cubics v, 289; curvilinear coordinates, xii, 1—18; multiple algebra, xii, 460, 468.
Wave Surfaces: tetrahedroid, \(i, 302-5, 587, vi, 21 \); on, iv, \(429-6, 432-4, \) xiii, \(238-52 \); equation of, in elliptic coordinates, \(xi, 71-2 \); evolution of Fresnel's, \(xi, 449 \).

Weber, H. H.: triple theta functions, \(x, 444, 446-54 \); bitangents of quartic, \(xi, 221-3 \); elliptic functions, \(xiii, 593 \).

Weierstrass, K.: doubly infinite product, \(i, 586 \); function \(Al(x) \), \(i, 587 \); \(al \)-functions, v, \(33-7 \); Steiner's quartic surface, v, \(423 \); infinite products, viii, xi; triple theta functions, \(x, 432, 434 \); theta functions, \(x, 499 \); elliptic integrals, \(xi, 64 \); theta functions, \(xi, 242 \); theory of functions, \(xi, 451-2, 454 \); function of, \(xi, 549 \); Abelian functions, \(xii, 95 \); and Jacobian elliptic functions, \(xii, 425-7 \); transformation in elliptic functions, \(xiii, 29, 31 \).

Weight: and partitions of a polygon, \(xiii, 110 \).

Weingarten, J.: application of surfaces to each other, \(xiii, 253-64 \).

Whewell, W.: dynamics, iv, 518; mathematics, \(xi, 431-2 \); number and time, \(xi, 442 \).

Whitworth, W. A.: triangles and conics, v, 593.

Winer, C.: model of cubic surface with twenty-seven real lines, viii, \(366-84 \).

Wilbraham, H.: probabilities, \(ii, 591-8 \); v, 85.

Wilkinson, M. M. U.: Taylor's theorem, \(viii, 519 \); chances, \(x, 588 \); rectangular transformation, \(xi, 421-8 \).

Wilson, J.: theorem of, \(xi, 598 \); and proof, \(xii, 45 \).

Wolstenholme, J.: relation among derivatives of a function, \(x, 590-2 \); conic and cubic, \(x, 605-7 \).

Women: Cayley and higher education of, \(viii, xix \).

Woolhouse, W. S. B.: theorem of integration, problem, \(vii, 588 \); algebraical theorem, \(x, 594-6 \).

Worms, H.: rotation of the Earth, iv, \(537, 593 \).

Woven: the term, \(xii, 121 \).

Wright, E.: Mercator's projection, \(xi, 448 \).

Wright, T. C.: on Cayley as a law-student, \(viii, xiv \).

Writing of Cayley: frontispiece, viii.

Wronski, H.: theorem of, \(ix, 96-102 \).

Young, G. P.: soluble quintic equations, \(xiii, 88 \); theory of groups, \(xiii, 336, 533 \).

Young, J. R.: sums of squares, \(ii, 52 \); theorems of squares, \(xi, 294, 301 \).

Zech, P.: wave surface, iv, \(429-5, 432-4 \).

Zero-values: of theta functions, \(x, 499-509, xii, 442-3 \); \(see \ also \ Theta \ Functions \).

Zeuthen, H. G.: curves and developables, \(i, 557 \); sextactic points, v, 545; curves which satisfy given conditions, \(vi, 191, 192, 200-26, 594 \); capitals, \(vi, 280 \); reciprocal surfaces, \(vi, 577-81, 591, 596-601, xi, 234 \); cubic surfaces, \(vi, 595-6 \); correspondence of two points on a curve, \(vii, 39 \); theory of conics, \(vii, 552-4 \); theory of curve and torse, \(viii, 72 \); table of singularities of torse, \(viii, 81-2 \); degenerate forms of curves, \(xi, 220 \); quartic curves, \(xi, 480 \); systems of curves, \(xi, 486-7 \).

Zolotareff, G.: elliptic integrals, \(x, 143 \).

Zomal: defined, \(vi, 473 \); \(see \ also \ Polyzomal \ Curves \).

Zornow, A. R.: mathematical tables, \(ix, 486 \).
Cayley, Arthur

The collected mathematical papers of Arthur Cayley

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY